Properties

Degree 16
Conductor $ 2^{32} \cdot 3^{16} \cdot 5^{8} $
Sign $1$
Motivic weight 5
Primitive no
Self-dual yes
Analytic rank 0

Origins

Origins of factors

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  − 8·5-s − 736·11-s − 1.37e3·19-s − 1.03e3·25-s − 5.87e3·29-s − 4.22e3·31-s − 2.36e4·41-s + 4.47e4·49-s + 5.88e3·55-s + 9.16e4·59-s + 1.23e5·61-s − 1.25e5·71-s − 4.32e4·79-s + 4.19e4·89-s + 1.10e4·95-s − 6.72e5·101-s − 5.39e5·109-s + 5.38e4·121-s + 1.30e5·125-s + 127-s + 131-s + 137-s + 139-s + 4.69e4·145-s + 149-s + 151-s + 3.37e4·155-s + ⋯
L(s)  = 1  − 0.143·5-s − 1.83·11-s − 0.874·19-s − 0.331·25-s − 1.29·29-s − 0.789·31-s − 2.19·41-s + 2.66·49-s + 0.262·55-s + 3.42·59-s + 4.26·61-s − 2.95·71-s − 0.779·79-s + 0.560·89-s + 0.125·95-s − 6.55·101-s − 4.35·109-s + 0.334·121-s + 0.744·125-s + 5.50e−6·127-s + 5.09e−6·131-s + 4.55e−6·137-s + 4.38e−6·139-s + 0.185·145-s + 3.69e−6·149-s + 3.56e−6·151-s + 0.112·155-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{32} \cdot 3^{16} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(6-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{32} \cdot 3^{16} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s+5/2)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

\( d \)  =  \(16\)
\( N \)  =  \(2^{32} \cdot 3^{16} \cdot 5^{8}\)
\( \varepsilon \)  =  $1$
motivic weight  =  \(5\)
character  :  induced by $\chi_{720} (1, \cdot )$
primitive  :  no
self-dual  :  yes
analytic rank  =  \(0\)
Selberg data  =  \((16,\ 2^{32} \cdot 3^{16} \cdot 5^{8} ,\ ( \ : [5/2]^{8} ),\ 1 )\)
\(L(3)\)  \(\approx\)  \(5.264481118\)
\(L(\frac12)\)  \(\approx\)  \(5.264481118\)
\(L(\frac{7}{2})\)   not available
\(L(1)\)   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \]where, for $p \notin \{2,\;3,\;5\}$,\(F_p(T)\) is a polynomial of degree 16. If $p \in \{2,\;3,\;5\}$, then $F_p(T)$ is a polynomial of degree at most 15.
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + 8 T + 44 p^{2} T^{2} - 904 p^{3} T^{3} - 3506 p^{3} T^{4} - 904 p^{8} T^{5} + 44 p^{12} T^{6} + 8 p^{15} T^{7} + p^{20} T^{8} \)
good7 \( 1 - 44728 T^{2} + 1493128636 T^{4} - 37445733732616 T^{6} + 682894235558230726 T^{8} - 37445733732616 p^{10} T^{10} + 1493128636 p^{20} T^{12} - 44728 p^{30} T^{14} + p^{40} T^{16} \)
11 \( ( 1 + 368 T + 176204 T^{2} + 51158896 T^{3} + 42277949270 T^{4} + 51158896 p^{5} T^{5} + 176204 p^{10} T^{6} + 368 p^{15} T^{7} + p^{20} T^{8} )^{2} \)
13 \( 1 - 1578472 T^{2} + 1074189263356 T^{4} - 437549632721743384 T^{6} + \)\(15\!\cdots\!86\)\( T^{8} - 437549632721743384 p^{10} T^{10} + 1074189263356 p^{20} T^{12} - 1578472 p^{30} T^{14} + p^{40} T^{16} \)
17 \( 1 - 6260872 T^{2} + 17547242668444 T^{4} - 31297293718759478968 T^{6} + \)\(45\!\cdots\!30\)\( T^{8} - 31297293718759478968 p^{10} T^{10} + 17547242668444 p^{20} T^{12} - 6260872 p^{30} T^{14} + p^{40} T^{16} \)
19 \( ( 1 + 688 T + 5308396 T^{2} + 6058136368 T^{3} + 15069081422710 T^{4} + 6058136368 p^{5} T^{5} + 5308396 p^{10} T^{6} + 688 p^{15} T^{7} + p^{20} T^{8} )^{2} \)
23 \( 1 - 34675896 T^{2} + 569897415616828 T^{4} - \)\(59\!\cdots\!20\)\( T^{6} + \)\(44\!\cdots\!82\)\( T^{8} - \)\(59\!\cdots\!20\)\( p^{10} T^{10} + 569897415616828 p^{20} T^{12} - 34675896 p^{30} T^{14} + p^{40} T^{16} \)
29 \( ( 1 + 2936 T + 58625996 T^{2} + 77951973928 T^{3} + 1466411094282230 T^{4} + 77951973928 p^{5} T^{5} + 58625996 p^{10} T^{6} + 2936 p^{15} T^{7} + p^{20} T^{8} )^{2} \)
31 \( ( 1 + 2112 T + 80187004 T^{2} + 163080265536 T^{3} + 3196344720873606 T^{4} + 163080265536 p^{5} T^{5} + 80187004 p^{10} T^{6} + 2112 p^{15} T^{7} + p^{20} T^{8} )^{2} \)
37 \( 1 - 251774632 T^{2} + 38631208311838780 T^{4} - \)\(41\!\cdots\!52\)\( T^{6} + \)\(32\!\cdots\!34\)\( T^{8} - \)\(41\!\cdots\!52\)\( p^{10} T^{10} + 38631208311838780 p^{20} T^{12} - 251774632 p^{30} T^{14} + p^{40} T^{16} \)
41 \( ( 1 + 11800 T + 337909340 T^{2} + 2943020124776 T^{3} + 51155654972384870 T^{4} + 2943020124776 p^{5} T^{5} + 337909340 p^{10} T^{6} + 11800 p^{15} T^{7} + p^{20} T^{8} )^{2} \)
43 \( 1 - 283211672 T^{2} + 48021567531024796 T^{4} - \)\(54\!\cdots\!84\)\( T^{6} + \)\(43\!\cdots\!06\)\( T^{8} - \)\(54\!\cdots\!84\)\( p^{10} T^{10} + 48021567531024796 p^{20} T^{12} - 283211672 p^{30} T^{14} + p^{40} T^{16} \)
47 \( 1 - 963352312 T^{2} + 473832864723586300 T^{4} - \)\(15\!\cdots\!72\)\( T^{6} + \)\(40\!\cdots\!54\)\( T^{8} - \)\(15\!\cdots\!72\)\( p^{10} T^{10} + 473832864723586300 p^{20} T^{12} - 963352312 p^{30} T^{14} + p^{40} T^{16} \)
53 \( 1 - 1183385640 T^{2} + 874785099161623996 T^{4} - \)\(49\!\cdots\!80\)\( T^{6} + \)\(23\!\cdots\!06\)\( T^{8} - \)\(49\!\cdots\!80\)\( p^{10} T^{10} + 874785099161623996 p^{20} T^{12} - 1183385640 p^{30} T^{14} + p^{40} T^{16} \)
59 \( ( 1 - 45840 T + 3064286732 T^{2} - 94721285480976 T^{3} + 3348109683185502486 T^{4} - 94721285480976 p^{5} T^{5} + 3064286732 p^{10} T^{6} - 45840 p^{15} T^{7} + p^{20} T^{8} )^{2} \)
61 \( ( 1 - 61928 T + 3903014764 T^{2} - 145287706763384 T^{3} + 5198153942066716726 T^{4} - 145287706763384 p^{5} T^{5} + 3903014764 p^{10} T^{6} - 61928 p^{15} T^{7} + p^{20} T^{8} )^{2} \)
67 \( 1 - 9281919064 T^{2} + 39492482666681482588 T^{4} - \)\(10\!\cdots\!40\)\( T^{6} + \)\(16\!\cdots\!62\)\( T^{8} - \)\(10\!\cdots\!40\)\( p^{10} T^{10} + 39492482666681482588 p^{20} T^{12} - 9281919064 p^{30} T^{14} + p^{40} T^{16} \)
71 \( ( 1 + 62816 T + 3398787356 T^{2} + 184024084124896 T^{3} + 8353296562609817510 T^{4} + 184024084124896 p^{5} T^{5} + 3398787356 p^{10} T^{6} + 62816 p^{15} T^{7} + p^{20} T^{8} )^{2} \)
73 \( 1 - 9140679496 T^{2} + 46078306824990298588 T^{4} - \)\(15\!\cdots\!60\)\( T^{6} + \)\(37\!\cdots\!02\)\( T^{8} - \)\(15\!\cdots\!60\)\( p^{10} T^{10} + 46078306824990298588 p^{20} T^{12} - 9140679496 p^{30} T^{14} + p^{40} T^{16} \)
79 \( ( 1 + 21632 T + 7152876604 T^{2} + 332616618908288 T^{3} + 24121899620797566790 T^{4} + 332616618908288 p^{5} T^{5} + 7152876604 p^{10} T^{6} + 21632 p^{15} T^{7} + p^{20} T^{8} )^{2} \)
83 \( 1 - 81444552 p T^{2} + 40943120759345365468 T^{4} - \)\(86\!\cdots\!80\)\( T^{6} + \)\(39\!\cdots\!42\)\( T^{8} - \)\(86\!\cdots\!80\)\( p^{10} T^{10} + 40943120759345365468 p^{20} T^{12} - 81444552 p^{31} T^{14} + p^{40} T^{16} \)
89 \( ( 1 - 20952 T + 16118164796 T^{2} - 497915996461992 T^{3} + \)\(11\!\cdots\!30\)\( T^{4} - 497915996461992 p^{5} T^{5} + 16118164796 p^{10} T^{6} - 20952 p^{15} T^{7} + p^{20} T^{8} )^{2} \)
97 \( 1 - 45263915272 T^{2} + \)\(10\!\cdots\!40\)\( T^{4} - \)\(14\!\cdots\!12\)\( T^{6} + \)\(15\!\cdots\!94\)\( T^{8} - \)\(14\!\cdots\!12\)\( p^{10} T^{10} + \)\(10\!\cdots\!40\)\( p^{20} T^{12} - 45263915272 p^{30} T^{14} + p^{40} T^{16} \)
show more
show less
\[\begin{aligned}L(s) = \prod_p \ \prod_{j=1}^{16} (1 - \alpha_{j,p}\, p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−3.80027660480860817256968660284, −3.59318526703577073335998981585, −3.45599059610337497261531802066, −3.29460425961799727338291502189, −2.98641798392962560008580654481, −2.90515951120082088713759945014, −2.88043736509264931942810638882, −2.73804949833829672232757428643, −2.61658104911642400989684470063, −2.39633392741632630567932788603, −2.23418420605270386679722770888, −2.17835924943414403065866381828, −2.12246412202089530908351919487, −1.95594145045587337466972743682, −1.58135566858768221600228768031, −1.45879027932858330539191127212, −1.39368699581079913726855152068, −1.38416421474668904496555765184, −1.08711662988951257461182819972, −0.888419825970146979649165215715, −0.60357518105335594277876384796, −0.46430658500717263471593559093, −0.36171891910173093535228290110, −0.23594386061335684758237221877, −0.22106664779076473625456166777, 0.22106664779076473625456166777, 0.23594386061335684758237221877, 0.36171891910173093535228290110, 0.46430658500717263471593559093, 0.60357518105335594277876384796, 0.888419825970146979649165215715, 1.08711662988951257461182819972, 1.38416421474668904496555765184, 1.39368699581079913726855152068, 1.45879027932858330539191127212, 1.58135566858768221600228768031, 1.95594145045587337466972743682, 2.12246412202089530908351919487, 2.17835924943414403065866381828, 2.23418420605270386679722770888, 2.39633392741632630567932788603, 2.61658104911642400989684470063, 2.73804949833829672232757428643, 2.88043736509264931942810638882, 2.90515951120082088713759945014, 2.98641798392962560008580654481, 3.29460425961799727338291502189, 3.45599059610337497261531802066, 3.59318526703577073335998981585, 3.80027660480860817256968660284

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.