Properties

Label 8-720e4-1.1-c2e4-0-6
Degree $8$
Conductor $268738560000$
Sign $1$
Analytic cond. $148139.$
Root an. cond. $4.42928$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 48·19-s + 42·25-s + 152·31-s + 104·49-s − 280·61-s − 120·79-s + 296·109-s + 288·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 152·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + ⋯
L(s)  = 1  − 2.52·19-s + 1.67·25-s + 4.90·31-s + 2.12·49-s − 4.59·61-s − 1.51·79-s + 2.71·109-s + 2.38·121-s + 0.00787·127-s + 0.00763·131-s + 0.00729·137-s + 0.00719·139-s + 0.00671·149-s + 0.00662·151-s + 0.00636·157-s + 0.00613·163-s + 0.00598·167-s − 0.899·169-s + 0.00578·173-s + 0.00558·179-s + 0.00552·181-s + 0.00523·191-s + 0.00518·193-s + 0.00507·197-s + 0.00502·199-s + 0.00473·211-s + 0.00448·223-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{8} \cdot 5^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(3-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{8} \cdot 5^{4}\right)^{s/2} \, \Gamma_{\C}(s+1)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{16} \cdot 3^{8} \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(148139.\)
Root analytic conductor: \(4.42928\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{16} \cdot 3^{8} \cdot 5^{4} ,\ ( \ : 1, 1, 1, 1 ),\ 1 )\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(1.214707337\)
\(L(\frac12)\) \(\approx\) \(1.214707337\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5$C_2^2$ \( 1 - 42 T^{2} + p^{4} T^{4} \)
good7$C_2^2$ \( ( 1 - 52 T^{2} + p^{4} T^{4} )^{2} \)
11$C_2^2$ \( ( 1 - 144 T^{2} + p^{4} T^{4} )^{2} \)
13$C_2^2$ \( ( 1 + 76 T^{2} + p^{4} T^{4} )^{2} \)
17$C_2^2$ \( ( 1 + 210 T^{2} + p^{4} T^{4} )^{2} \)
19$C_2$ \( ( 1 + 12 T + p^{2} T^{2} )^{4} \)
23$C_2^2$ \( ( 1 + 42 p T^{2} + p^{4} T^{4} )^{2} \)
29$C_2^2$ \( ( 1 - 1610 T^{2} + p^{4} T^{4} )^{2} \)
31$C_2$ \( ( 1 - 38 T + p^{2} T^{2} )^{4} \)
37$C_2^2$ \( ( 1 - 2692 T^{2} + p^{4} T^{4} )^{2} \)
41$C_2^2$ \( ( 1 + 1440 T^{2} + p^{4} T^{4} )^{2} \)
43$C_2^2$ \( ( 1 + 902 T^{2} + p^{4} T^{4} )^{2} \)
47$C_2^2$ \( ( 1 - 1470 T^{2} + p^{4} T^{4} )^{2} \)
53$C_2$ \( ( 1 + p^{2} T^{2} )^{4} \)
59$C_2^2$ \( ( 1 + p^{4} T^{4} )^{2} \)
61$C_2$ \( ( 1 + 70 T + p^{2} T^{2} )^{4} \)
67$C_2^2$ \( ( 1 + 2798 T^{2} + p^{4} T^{4} )^{2} \)
71$C_2^2$ \( ( 1 + 4030 T^{2} + p^{4} T^{4} )^{2} \)
73$C_2^2$ \( ( 1 - 10474 T^{2} + p^{4} T^{4} )^{2} \)
79$C_2$ \( ( 1 + 30 T + p^{2} T^{2} )^{4} \)
83$C_2^2$ \( ( 1 - 4254 T^{2} + p^{4} T^{4} )^{2} \)
89$C_2^2$ \( ( 1 - 14784 T^{2} + p^{4} T^{4} )^{2} \)
97$C_2^2$ \( ( 1 - 9802 T^{2} + p^{4} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.36052330904968145794517324660, −6.90629747753969979542327658630, −6.83708201655075239321110343827, −6.51063338271153183142230852327, −6.31684737887153408583525080951, −6.09555595944207973957427994680, −5.97881284645072039736016796429, −5.85056945671979228775462136859, −5.35134387527944707559252729274, −4.90483348621287154714825787387, −4.74751397708240029935046010874, −4.54452813832720222889711051919, −4.45160594224813587226764565586, −4.28724527023839170645223133491, −3.90377745000679921489198038403, −3.28384711569160241651586701261, −3.23959928664010922161579251620, −2.98998293888909221110874308288, −2.40863458462147401742208820245, −2.38219398738874057388919931427, −2.22131690238259268019193647486, −1.32603783672534691073634855723, −1.24464943366062013008960699521, −0.862865440054364603715582903708, −0.18996158735494149256740326497, 0.18996158735494149256740326497, 0.862865440054364603715582903708, 1.24464943366062013008960699521, 1.32603783672534691073634855723, 2.22131690238259268019193647486, 2.38219398738874057388919931427, 2.40863458462147401742208820245, 2.98998293888909221110874308288, 3.23959928664010922161579251620, 3.28384711569160241651586701261, 3.90377745000679921489198038403, 4.28724527023839170645223133491, 4.45160594224813587226764565586, 4.54452813832720222889711051919, 4.74751397708240029935046010874, 4.90483348621287154714825787387, 5.35134387527944707559252729274, 5.85056945671979228775462136859, 5.97881284645072039736016796429, 6.09555595944207973957427994680, 6.31684737887153408583525080951, 6.51063338271153183142230852327, 6.83708201655075239321110343827, 6.90629747753969979542327658630, 7.36052330904968145794517324660

Graph of the $Z$-function along the critical line