Properties

Label 8-720e4-1.1-c1e4-0-0
Degree $8$
Conductor $268738560000$
Sign $1$
Analytic cond. $1092.54$
Root an. cond. $2.39775$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s + 2·5-s + 7-s − 3·9-s − 3·11-s + 2·13-s − 4·15-s − 18·17-s − 2·19-s − 2·21-s − 3·23-s + 25-s + 14·27-s + 3·29-s − 2·31-s + 6·33-s + 2·35-s − 16·37-s − 4·39-s + 6·41-s − 17·43-s − 6·45-s − 9·47-s + 6·49-s + 36·51-s − 6·55-s + 4·57-s + ⋯
L(s)  = 1  − 1.15·3-s + 0.894·5-s + 0.377·7-s − 9-s − 0.904·11-s + 0.554·13-s − 1.03·15-s − 4.36·17-s − 0.458·19-s − 0.436·21-s − 0.625·23-s + 1/5·25-s + 2.69·27-s + 0.557·29-s − 0.359·31-s + 1.04·33-s + 0.338·35-s − 2.63·37-s − 0.640·39-s + 0.937·41-s − 2.59·43-s − 0.894·45-s − 1.31·47-s + 6/7·49-s + 5.04·51-s − 0.809·55-s + 0.529·57-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{8} \cdot 5^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{8} \cdot 5^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{16} \cdot 3^{8} \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(1092.54\)
Root analytic conductor: \(2.39775\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{16} \cdot 3^{8} \cdot 5^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(0.1193242096\)
\(L(\frac12)\) \(\approx\) \(0.1193242096\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2$ \( ( 1 + T + p T^{2} )^{2} \)
5$C_2$ \( ( 1 - T + T^{2} )^{2} \)
good7$D_4\times C_2$ \( 1 - T - 5 T^{2} + 8 T^{3} - 20 T^{4} + 8 p T^{5} - 5 p^{2} T^{6} - p^{3} T^{7} + p^{4} T^{8} \)
11$D_4\times C_2$ \( 1 + 3 T - 7 T^{2} - 18 T^{3} + 36 T^{4} - 18 p T^{5} - 7 p^{2} T^{6} + 3 p^{3} T^{7} + p^{4} T^{8} \)
13$D_4\times C_2$ \( 1 - 2 T + 10 T^{2} + 64 T^{3} - 185 T^{4} + 64 p T^{5} + 10 p^{2} T^{6} - 2 p^{3} T^{7} + p^{4} T^{8} \)
17$D_{4}$ \( ( 1 + 9 T + 46 T^{2} + 9 p T^{3} + p^{2} T^{4} )^{2} \)
19$D_{4}$ \( ( 1 + T + 30 T^{2} + p T^{3} + p^{2} T^{4} )^{2} \)
23$D_4\times C_2$ \( 1 + 3 T - 31 T^{2} - 18 T^{3} + 864 T^{4} - 18 p T^{5} - 31 p^{2} T^{6} + 3 p^{3} T^{7} + p^{4} T^{8} \)
29$D_4\times C_2$ \( 1 - 3 T - 43 T^{2} + 18 T^{3} + 1602 T^{4} + 18 p T^{5} - 43 p^{2} T^{6} - 3 p^{3} T^{7} + p^{4} T^{8} \)
31$D_4\times C_2$ \( 1 + 2 T - 26 T^{2} - 64 T^{3} - 185 T^{4} - 64 p T^{5} - 26 p^{2} T^{6} + 2 p^{3} T^{7} + p^{4} T^{8} \)
37$C_2$ \( ( 1 + 4 T + p T^{2} )^{4} \)
41$C_2^2$ \( ( 1 - 3 T - 32 T^{2} - 3 p T^{3} + p^{2} T^{4} )^{2} \)
43$D_4\times C_2$ \( 1 + 17 T + 139 T^{2} + 1088 T^{3} + 8224 T^{4} + 1088 p T^{5} + 139 p^{2} T^{6} + 17 p^{3} T^{7} + p^{4} T^{8} \)
47$D_4\times C_2$ \( 1 + 9 T - 25 T^{2} + 108 T^{3} + 5220 T^{4} + 108 p T^{5} - 25 p^{2} T^{6} + 9 p^{3} T^{7} + p^{4} T^{8} \)
53$C_2^2$ \( ( 1 - 26 T^{2} + p^{2} T^{4} )^{2} \)
59$D_4\times C_2$ \( 1 - 3 T - 103 T^{2} + 18 T^{3} + 8532 T^{4} + 18 p T^{5} - 103 p^{2} T^{6} - 3 p^{3} T^{7} + p^{4} T^{8} \)
61$D_4\times C_2$ \( 1 + T - 47 T^{2} - 74 T^{3} - 1478 T^{4} - 74 p T^{5} - 47 p^{2} T^{6} + p^{3} T^{7} + p^{4} T^{8} \)
67$C_2^2$ \( ( 1 + 7 T - 18 T^{2} + 7 p T^{3} + p^{2} T^{4} )^{2} \)
71$C_2$ \( ( 1 - 6 T + p T^{2} )^{4} \)
73$D_{4}$ \( ( 1 + 11 T + 102 T^{2} + 11 p T^{3} + p^{2} T^{4} )^{2} \)
79$C_2^2$ \( ( 1 - 2 T - 75 T^{2} - 2 p T^{3} + p^{2} T^{4} )^{2} \)
83$D_4\times C_2$ \( 1 - 9 T - 97 T^{2} - 108 T^{3} + 18072 T^{4} - 108 p T^{5} - 97 p^{2} T^{6} - 9 p^{3} T^{7} + p^{4} T^{8} \)
89$D_{4}$ \( ( 1 - 15 T + 160 T^{2} - 15 p T^{3} + p^{2} T^{4} )^{2} \)
97$D_4\times C_2$ \( 1 - 11 T - 95 T^{2} - 242 T^{3} + 25510 T^{4} - 242 p T^{5} - 95 p^{2} T^{6} - 11 p^{3} T^{7} + p^{4} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.23150275299571797326843847594, −7.07883326663211550189425493882, −7.07029882326073477280732772888, −6.56732739935333797512001845144, −6.42181100335918809527847325685, −6.31064795445806585845113464698, −6.28316653760480924353263066762, −5.87104830299926570490839906389, −5.55820279733234683070623559558, −5.25303668978348189925771308335, −5.24934320231587197705396059503, −4.90441204968841974734233093047, −4.56292427369574977162951961659, −4.42012588764006285357093255135, −4.41517139960761881157285576241, −3.71570529812278272961330773073, −3.33608604005334151096161475763, −3.25853268780041647815861755521, −2.86792122337565813396102077544, −2.19985562581886842298166770815, −2.16346493969925411353803671666, −2.06050521472812793312763179561, −1.67968990075918061043865538968, −0.74678151871686385370391301464, −0.12636429227923717942868969240, 0.12636429227923717942868969240, 0.74678151871686385370391301464, 1.67968990075918061043865538968, 2.06050521472812793312763179561, 2.16346493969925411353803671666, 2.19985562581886842298166770815, 2.86792122337565813396102077544, 3.25853268780041647815861755521, 3.33608604005334151096161475763, 3.71570529812278272961330773073, 4.41517139960761881157285576241, 4.42012588764006285357093255135, 4.56292427369574977162951961659, 4.90441204968841974734233093047, 5.24934320231587197705396059503, 5.25303668978348189925771308335, 5.55820279733234683070623559558, 5.87104830299926570490839906389, 6.28316653760480924353263066762, 6.31064795445806585845113464698, 6.42181100335918809527847325685, 6.56732739935333797512001845144, 7.07029882326073477280732772888, 7.07883326663211550189425493882, 7.23150275299571797326843847594

Graph of the $Z$-function along the critical line