Properties

Label 2-7105-1.1-c1-0-333
Degree $2$
Conductor $7105$
Sign $1$
Analytic cond. $56.7337$
Root an. cond. $7.53217$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.56·2-s + 1.67·3-s + 4.55·4-s + 5-s + 4.28·6-s + 6.54·8-s − 0.200·9-s + 2.56·10-s + 6.55·11-s + 7.62·12-s + 1.87·13-s + 1.67·15-s + 7.65·16-s − 0.225·17-s − 0.514·18-s + 1.89·19-s + 4.55·20-s + 16.7·22-s − 4.67·23-s + 10.9·24-s + 25-s + 4.79·26-s − 5.35·27-s + 29-s + 4.28·30-s − 7.51·31-s + 6.50·32-s + ⋯
L(s)  = 1  + 1.81·2-s + 0.965·3-s + 2.27·4-s + 0.447·5-s + 1.74·6-s + 2.31·8-s − 0.0669·9-s + 0.809·10-s + 1.97·11-s + 2.20·12-s + 0.518·13-s + 0.431·15-s + 1.91·16-s − 0.0547·17-s − 0.121·18-s + 0.435·19-s + 1.01·20-s + 3.57·22-s − 0.975·23-s + 2.23·24-s + 0.200·25-s + 0.939·26-s − 1.03·27-s + 0.185·29-s + 0.782·30-s − 1.34·31-s + 1.14·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7105 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7105 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7105\)    =    \(5 \cdot 7^{2} \cdot 29\)
Sign: $1$
Analytic conductor: \(56.7337\)
Root analytic conductor: \(7.53217\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 7105,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(11.15872859\)
\(L(\frac12)\) \(\approx\) \(11.15872859\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 - T \)
7 \( 1 \)
29 \( 1 - T \)
good2 \( 1 - 2.56T + 2T^{2} \)
3 \( 1 - 1.67T + 3T^{2} \)
11 \( 1 - 6.55T + 11T^{2} \)
13 \( 1 - 1.87T + 13T^{2} \)
17 \( 1 + 0.225T + 17T^{2} \)
19 \( 1 - 1.89T + 19T^{2} \)
23 \( 1 + 4.67T + 23T^{2} \)
31 \( 1 + 7.51T + 31T^{2} \)
37 \( 1 - 1.85T + 37T^{2} \)
41 \( 1 + 9.90T + 41T^{2} \)
43 \( 1 - 2.35T + 43T^{2} \)
47 \( 1 - 4.69T + 47T^{2} \)
53 \( 1 - 0.0442T + 53T^{2} \)
59 \( 1 + 8.88T + 59T^{2} \)
61 \( 1 - 4.28T + 61T^{2} \)
67 \( 1 + 13.6T + 67T^{2} \)
71 \( 1 - 13.1T + 71T^{2} \)
73 \( 1 + 5.92T + 73T^{2} \)
79 \( 1 - 8.84T + 79T^{2} \)
83 \( 1 - 10.6T + 83T^{2} \)
89 \( 1 + 5.54T + 89T^{2} \)
97 \( 1 - 4.55T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.70623073434986195379626085144, −6.98134429072674037144927075490, −6.28588509486321075428170040510, −5.86688300641147929443467037954, −5.03025015637055421438958415425, −4.04578925327157681606952041255, −3.71085349842584498609074293508, −3.04788218681817572560752759823, −2.08731343509809489183113464360, −1.47986574811676139044695612222, 1.47986574811676139044695612222, 2.08731343509809489183113464360, 3.04788218681817572560752759823, 3.71085349842584498609074293508, 4.04578925327157681606952041255, 5.03025015637055421438958415425, 5.86688300641147929443467037954, 6.28588509486321075428170040510, 6.98134429072674037144927075490, 7.70623073434986195379626085144

Graph of the $Z$-function along the critical line