Properties

Label 8-84e8-1.1-c1e4-0-3
Degree $8$
Conductor $2.479\times 10^{15}$
Sign $1$
Analytic cond. $1.00772\times 10^{7}$
Root an. cond. $7.50616$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 16·19-s − 10·25-s + 4·31-s + 16·37-s − 32·103-s − 16·109-s + 14·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 28·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + 227-s + ⋯
L(s)  = 1  − 3.67·19-s − 2·25-s + 0.718·31-s + 2.63·37-s − 3.15·103-s − 1.53·109-s + 1.27·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 2.15·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + 0.0712·197-s + 0.0708·199-s + 0.0688·211-s + 0.0669·223-s + 0.0663·227-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{8} \cdot 7^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{8} \cdot 7^{8}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{16} \cdot 3^{8} \cdot 7^{8}\)
Sign: $1$
Analytic conductor: \(1.00772\times 10^{7}\)
Root analytic conductor: \(7.50616\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{16} \cdot 3^{8} \cdot 7^{8} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(1.431218129\)
\(L(\frac12)\) \(\approx\) \(1.431218129\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 \)
good5$C_2^2$ \( ( 1 + p T^{2} + p^{2} T^{4} )^{2} \)
11$C_2^2$ \( ( 1 - 7 T^{2} + p^{2} T^{4} )^{2} \)
13$C_2^2$ \( ( 1 - 14 T^{2} + p^{2} T^{4} )^{2} \)
17$C_2$ \( ( 1 - p T^{2} )^{4} \)
19$C_2$ \( ( 1 + 4 T + p T^{2} )^{4} \)
23$C_2^2$ \( ( 1 + 14 T^{2} + p^{2} T^{4} )^{2} \)
29$C_2^2$ \( ( 1 + 13 T^{2} + p^{2} T^{4} )^{2} \)
31$C_2$ \( ( 1 - T + p T^{2} )^{4} \)
37$C_2$ \( ( 1 - 4 T + p T^{2} )^{4} \)
41$C_2^2$ \( ( 1 - 22 T^{2} + p^{2} T^{4} )^{2} \)
43$C_2^2$ \( ( 1 - 38 T^{2} + p^{2} T^{4} )^{2} \)
47$C_2^2$ \( ( 1 - 86 T^{2} + p^{2} T^{4} )^{2} \)
53$C_2^2$ \( ( 1 + 61 T^{2} + p^{2} T^{4} )^{2} \)
59$C_2^2$ \( ( 1 + 73 T^{2} + p^{2} T^{4} )^{2} \)
61$C_2^2$ \( ( 1 - 14 T^{2} + p^{2} T^{4} )^{2} \)
67$C_2^2$ \( ( 1 - 86 T^{2} + p^{2} T^{4} )^{2} \)
71$C_2^2$ \( ( 1 - 82 T^{2} + p^{2} T^{4} )^{2} \)
73$C_2^2$ \( ( 1 - 98 T^{2} + p^{2} T^{4} )^{2} \)
79$C_2$ \( ( 1 - 13 T + p T^{2} )^{2}( 1 + 13 T + p T^{2} )^{2} \)
83$C_2^2$ \( ( 1 + 121 T^{2} + p^{2} T^{4} )^{2} \)
89$C_2^2$ \( ( 1 - 118 T^{2} + p^{2} T^{4} )^{2} \)
97$C_2$ \( ( 1 - 19 T + p T^{2} )^{2}( 1 + 19 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−5.63045393954638172188494618209, −5.49132887716754456403200517522, −5.16888927474375648083528463706, −4.96393884382612474219096136768, −4.83086731547623608003582137870, −4.60420425460600731763959549275, −4.29437340775562128654432464710, −4.18798816776879747443436082645, −4.11394668414404774472396847947, −4.00140658454423579610073785112, −3.77460678352694651819785755503, −3.66153651414517251206560734451, −3.16843187068028648422359091220, −2.87842304912992421571141283935, −2.73353966047190483946519546726, −2.68610099673332523804600045851, −2.51682842873814920428094647145, −2.05792504553396729337691159715, −1.78078014285196046920368611178, −1.76725165559088633346176531435, −1.75849633751597617554734064981, −1.07619896805680273018663696559, −0.829012333654465463349074760160, −0.47793205240919484970007725540, −0.19303620294808033317587379432, 0.19303620294808033317587379432, 0.47793205240919484970007725540, 0.829012333654465463349074760160, 1.07619896805680273018663696559, 1.75849633751597617554734064981, 1.76725165559088633346176531435, 1.78078014285196046920368611178, 2.05792504553396729337691159715, 2.51682842873814920428094647145, 2.68610099673332523804600045851, 2.73353966047190483946519546726, 2.87842304912992421571141283935, 3.16843187068028648422359091220, 3.66153651414517251206560734451, 3.77460678352694651819785755503, 4.00140658454423579610073785112, 4.11394668414404774472396847947, 4.18798816776879747443436082645, 4.29437340775562128654432464710, 4.60420425460600731763959549275, 4.83086731547623608003582137870, 4.96393884382612474219096136768, 5.16888927474375648083528463706, 5.49132887716754456403200517522, 5.63045393954638172188494618209

Graph of the $Z$-function along the critical line