Properties

Label 4-84e4-1.1-c1e2-0-10
Degree $4$
Conductor $49787136$
Sign $1$
Analytic cond. $3174.47$
Root an. cond. $7.50616$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 14·19-s + 7·25-s + 12·29-s − 10·31-s − 10·37-s + 6·47-s + 18·53-s + 18·59-s + 24·83-s + 2·103-s + 22·109-s − 12·113-s + 19·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 26·169-s + 173-s + 179-s + 181-s + 191-s + ⋯
L(s)  = 1  − 3.21·19-s + 7/5·25-s + 2.22·29-s − 1.79·31-s − 1.64·37-s + 0.875·47-s + 2.47·53-s + 2.34·59-s + 2.63·83-s + 0.197·103-s + 2.10·109-s − 1.12·113-s + 1.72·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 2·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 49787136 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 49787136 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(49787136\)    =    \(2^{8} \cdot 3^{4} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(3174.47\)
Root analytic conductor: \(7.50616\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 49787136,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.667960695\)
\(L(\frac12)\) \(\approx\) \(2.667960695\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 \)
good5$C_2^2$ \( 1 - 7 T^{2} + p^{2} T^{4} \)
11$C_2^2$ \( 1 - 19 T^{2} + p^{2} T^{4} \)
13$C_2$ \( ( 1 - p T^{2} )^{2} \)
17$C_2^2$ \( 1 - 7 T^{2} + p^{2} T^{4} \)
19$C_2$ \( ( 1 + 7 T + p T^{2} )^{2} \)
23$C_2^2$ \( 1 + 29 T^{2} + p^{2} T^{4} \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 + 5 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 + 5 T + p T^{2} )^{2} \)
41$C_2^2$ \( 1 - 34 T^{2} + p^{2} T^{4} \)
43$C_2^2$ \( 1 - 74 T^{2} + p^{2} T^{4} \)
47$C_2$ \( ( 1 - 3 T + p T^{2} )^{2} \)
53$C_2$ \( ( 1 - 9 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 - 9 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 13 T + p T^{2} )( 1 + 13 T + p T^{2} ) \)
67$C_2^2$ \( 1 - 107 T^{2} + p^{2} T^{4} \)
71$C_2^2$ \( 1 - 130 T^{2} + p^{2} T^{4} \)
73$C_2$ \( ( 1 - 17 T + p T^{2} )( 1 + 17 T + p T^{2} ) \)
79$C_2$ \( ( 1 - 17 T + p T^{2} )( 1 + 17 T + p T^{2} ) \)
83$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
89$C_2^2$ \( 1 - 31 T^{2} + p^{2} T^{4} \)
97$C_2^2$ \( 1 - 146 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.028428612603451586522287380622, −8.026475907570667547216724708315, −7.19571912842469547367719109107, −7.00866407414404270157804879262, −6.75848535327920512346273789894, −6.50369004015251591324545535905, −6.04315310811076425445779523108, −5.70676722632084493973262372871, −5.13120895994906970240047178107, −5.05655078076346541028736057769, −4.47761594457905485660716018121, −4.19005759470164429182672936952, −3.72429222487841975771294925665, −3.57254945916163737161655319805, −2.69399820449790123844939848719, −2.60375618833385925078606604664, −1.95241034889330119870062566236, −1.81435211031509406449427572549, −0.797655410376273822697492592943, −0.51862816290019674256169529816, 0.51862816290019674256169529816, 0.797655410376273822697492592943, 1.81435211031509406449427572549, 1.95241034889330119870062566236, 2.60375618833385925078606604664, 2.69399820449790123844939848719, 3.57254945916163737161655319805, 3.72429222487841975771294925665, 4.19005759470164429182672936952, 4.47761594457905485660716018121, 5.05655078076346541028736057769, 5.13120895994906970240047178107, 5.70676722632084493973262372871, 6.04315310811076425445779523108, 6.50369004015251591324545535905, 6.75848535327920512346273789894, 7.00866407414404270157804879262, 7.19571912842469547367719109107, 8.026475907570667547216724708315, 8.028428612603451586522287380622

Graph of the $Z$-function along the critical line