Properties

Degree 2
Conductor $ 2^{4} \cdot 3^{2} \cdot 7^{2} $
Sign $1$
Motivic weight 1
Primitive yes
Self-dual yes
Analytic rank 0

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + 3.74·5-s − 5.29·11-s + 4.24·13-s + 3.74·17-s + 2.82·19-s + 5.29·23-s + 9·25-s − 5.29·29-s + 8.48·31-s + 4·37-s + 3.74·41-s − 8·43-s + 7.48·47-s − 10.5·53-s − 19.7·55-s + 7.48·59-s − 9.89·61-s + 15.8·65-s − 12·67-s − 15.8·71-s − 1.41·73-s + 4·79-s + 14.9·83-s + 14·85-s − 3.74·89-s + 10.5·95-s + 9.89·97-s + ⋯
L(s)  = 1  + 1.67·5-s − 1.59·11-s + 1.17·13-s + 0.907·17-s + 0.648·19-s + 1.10·23-s + 1.80·25-s − 0.982·29-s + 1.52·31-s + 0.657·37-s + 0.584·41-s − 1.21·43-s + 1.09·47-s − 1.45·53-s − 2.66·55-s + 0.974·59-s − 1.26·61-s + 1.96·65-s − 1.46·67-s − 1.88·71-s − 0.165·73-s + 0.450·79-s + 1.64·83-s + 1.51·85-s − 0.396·89-s + 1.08·95-s + 1.00·97-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7056 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7056 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(7056\)    =    \(2^{4} \cdot 3^{2} \cdot 7^{2}\)
\( \varepsilon \)  =  $1$
motivic weight  =  \(1\)
character  :  $\chi_{7056} (1, \cdot )$
primitive  :  yes
self-dual  :  yes
analytic rank  =  \(0\)
Selberg data  =  \((2,\ 7056,\ (\ :1/2),\ 1)\)
\(L(1)\)  \(\approx\)  \(3.108494002\)
\(L(\frac12)\)  \(\approx\)  \(3.108494002\)
\(L(\frac{3}{2})\)   not available
\(L(1)\)   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \]where, for $p \notin \{2,\;3,\;7\}$,\[F_p(T) = 1 - a_p T + p T^2 .\]If $p \in \{2,\;3,\;7\}$, then $F_p(T)$ is a polynomial of degree at most 1.
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 \)
good5 \( 1 - 3.74T + 5T^{2} \)
11 \( 1 + 5.29T + 11T^{2} \)
13 \( 1 - 4.24T + 13T^{2} \)
17 \( 1 - 3.74T + 17T^{2} \)
19 \( 1 - 2.82T + 19T^{2} \)
23 \( 1 - 5.29T + 23T^{2} \)
29 \( 1 + 5.29T + 29T^{2} \)
31 \( 1 - 8.48T + 31T^{2} \)
37 \( 1 - 4T + 37T^{2} \)
41 \( 1 - 3.74T + 41T^{2} \)
43 \( 1 + 8T + 43T^{2} \)
47 \( 1 - 7.48T + 47T^{2} \)
53 \( 1 + 10.5T + 53T^{2} \)
59 \( 1 - 7.48T + 59T^{2} \)
61 \( 1 + 9.89T + 61T^{2} \)
67 \( 1 + 12T + 67T^{2} \)
71 \( 1 + 15.8T + 71T^{2} \)
73 \( 1 + 1.41T + 73T^{2} \)
79 \( 1 - 4T + 79T^{2} \)
83 \( 1 - 14.9T + 83T^{2} \)
89 \( 1 + 3.74T + 89T^{2} \)
97 \( 1 - 9.89T + 97T^{2} \)
show more
show less
\[\begin{aligned}L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−7.908200130802060453954553137839, −7.29677586190252459331907628445, −6.27416898173198801591483566262, −5.85119957686320006113697844204, −5.27483064433548661672910596630, −4.61149936918639295981204792000, −3.22280337975959876606983494333, −2.78808889588003421473601151128, −1.77653879951124542232521737707, −0.947219629715373193663953557158, 0.947219629715373193663953557158, 1.77653879951124542232521737707, 2.78808889588003421473601151128, 3.22280337975959876606983494333, 4.61149936918639295981204792000, 5.27483064433548661672910596630, 5.85119957686320006113697844204, 6.27416898173198801591483566262, 7.29677586190252459331907628445, 7.908200130802060453954553137839

Graph of the $Z$-function along the critical line