# Properties

 Degree $2$ Conductor $7056$ Sign $-1$ Motivic weight $1$ Primitive yes Self-dual yes Analytic rank $1$

# Related objects

## Dirichlet series

 L(s)  = 1 + 3.41·5-s − 2·11-s − 2.58·13-s − 2.24·17-s − 2.82·19-s − 7.65·23-s + 6.65·25-s + 6.82·29-s − 1.17·31-s − 4·37-s + 6.24·41-s − 5.65·43-s + 2.82·47-s + 2·53-s − 6.82·55-s + 1.17·59-s − 12.2·61-s − 8.82·65-s + 5.65·67-s + 9.31·71-s − 13.8·73-s − 13.6·79-s − 7.31·83-s − 7.65·85-s − 14.2·89-s − 9.65·95-s − 2.58·97-s + ⋯
 L(s)  = 1 + 1.52·5-s − 0.603·11-s − 0.717·13-s − 0.543·17-s − 0.648·19-s − 1.59·23-s + 1.33·25-s + 1.26·29-s − 0.210·31-s − 0.657·37-s + 0.974·41-s − 0.862·43-s + 0.412·47-s + 0.274·53-s − 0.920·55-s + 0.152·59-s − 1.56·61-s − 1.09·65-s + 0.691·67-s + 1.10·71-s − 1.62·73-s − 1.53·79-s − 0.802·83-s − 0.830·85-s − 1.50·89-s − 0.990·95-s − 0.262·97-s + ⋯

## Functional equation

\begin{aligned}\Lambda(s)=\mathstrut & 7056 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}
\begin{aligned}\Lambda(s)=\mathstrut & 7056 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}

## Invariants

 Degree: $$2$$ Conductor: $$7056$$    =    $$2^{4} \cdot 3^{2} \cdot 7^{2}$$ Sign: $-1$ Motivic weight: $$1$$ Character: $\chi_{7056} (1, \cdot )$ Primitive: yes Self-dual: yes Analytic rank: $$1$$ Selberg data: $$(2,\ 7056,\ (\ :1/2),\ -1)$$

## Particular Values

 $$L(1)$$ $$=$$ $$0$$ $$L(\frac12)$$ $$=$$ $$0$$ $$L(\frac{3}{2})$$ not available $$L(1)$$ not available

## Euler product

$$L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}$$
$p$$F_p(T)$
bad2 $$1$$
3 $$1$$
7 $$1$$
good5 $$1 - 3.41T + 5T^{2}$$
11 $$1 + 2T + 11T^{2}$$
13 $$1 + 2.58T + 13T^{2}$$
17 $$1 + 2.24T + 17T^{2}$$
19 $$1 + 2.82T + 19T^{2}$$
23 $$1 + 7.65T + 23T^{2}$$
29 $$1 - 6.82T + 29T^{2}$$
31 $$1 + 1.17T + 31T^{2}$$
37 $$1 + 4T + 37T^{2}$$
41 $$1 - 6.24T + 41T^{2}$$
43 $$1 + 5.65T + 43T^{2}$$
47 $$1 - 2.82T + 47T^{2}$$
53 $$1 - 2T + 53T^{2}$$
59 $$1 - 1.17T + 59T^{2}$$
61 $$1 + 12.2T + 61T^{2}$$
67 $$1 - 5.65T + 67T^{2}$$
71 $$1 - 9.31T + 71T^{2}$$
73 $$1 + 13.8T + 73T^{2}$$
79 $$1 + 13.6T + 79T^{2}$$
83 $$1 + 7.31T + 83T^{2}$$
89 $$1 + 14.2T + 89T^{2}$$
97 $$1 + 2.58T + 97T^{2}$$
show less
$$L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}$$

## Imaginary part of the first few zeros on the critical line

−7.55973763307989687257252891818, −6.75380902641047902063154830933, −6.13269930168295852493121379074, −5.58090445863490675683316430432, −4.83279439459365984132108288079, −4.11120768880013435711142179385, −2.82325854171876303642458606981, −2.29283960700970602398070451706, −1.52589646569082031738432940262, 0, 1.52589646569082031738432940262, 2.29283960700970602398070451706, 2.82325854171876303642458606981, 4.11120768880013435711142179385, 4.83279439459365984132108288079, 5.58090445863490675683316430432, 6.13269930168295852493121379074, 6.75380902641047902063154830933, 7.55973763307989687257252891818