Properties

Degree $2$
Conductor $7056$
Sign $-1$
Motivic weight $1$
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + 0.585·5-s − 2·11-s − 5.41·13-s + 6.24·17-s + 2.82·19-s + 3.65·23-s − 4.65·25-s + 1.17·29-s − 6.82·31-s − 4·37-s − 2.24·41-s + 5.65·43-s − 2.82·47-s + 2·53-s − 1.17·55-s + 6.82·59-s − 3.75·61-s − 3.17·65-s − 5.65·67-s − 13.3·71-s + 5.89·73-s − 2.34·79-s + 15.3·83-s + 3.65·85-s − 5.75·89-s + 1.65·95-s − 5.41·97-s + ⋯
L(s)  = 1  + 0.261·5-s − 0.603·11-s − 1.50·13-s + 1.51·17-s + 0.648·19-s + 0.762·23-s − 0.931·25-s + 0.217·29-s − 1.22·31-s − 0.657·37-s − 0.350·41-s + 0.862·43-s − 0.412·47-s + 0.274·53-s − 0.157·55-s + 0.888·59-s − 0.481·61-s − 0.393·65-s − 0.691·67-s − 1.58·71-s + 0.690·73-s − 0.263·79-s + 1.68·83-s + 0.396·85-s − 0.610·89-s + 0.169·95-s − 0.549·97-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7056 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7056 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7056\)    =    \(2^{4} \cdot 3^{2} \cdot 7^{2}\)
Sign: $-1$
Motivic weight: \(1\)
Character: $\chi_{7056} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 7056,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 \)
good5 \( 1 - 0.585T + 5T^{2} \)
11 \( 1 + 2T + 11T^{2} \)
13 \( 1 + 5.41T + 13T^{2} \)
17 \( 1 - 6.24T + 17T^{2} \)
19 \( 1 - 2.82T + 19T^{2} \)
23 \( 1 - 3.65T + 23T^{2} \)
29 \( 1 - 1.17T + 29T^{2} \)
31 \( 1 + 6.82T + 31T^{2} \)
37 \( 1 + 4T + 37T^{2} \)
41 \( 1 + 2.24T + 41T^{2} \)
43 \( 1 - 5.65T + 43T^{2} \)
47 \( 1 + 2.82T + 47T^{2} \)
53 \( 1 - 2T + 53T^{2} \)
59 \( 1 - 6.82T + 59T^{2} \)
61 \( 1 + 3.75T + 61T^{2} \)
67 \( 1 + 5.65T + 67T^{2} \)
71 \( 1 + 13.3T + 71T^{2} \)
73 \( 1 - 5.89T + 73T^{2} \)
79 \( 1 + 2.34T + 79T^{2} \)
83 \( 1 - 15.3T + 83T^{2} \)
89 \( 1 + 5.75T + 89T^{2} \)
97 \( 1 + 5.41T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.48236774658715995686815740232, −7.16956921683940196291798479440, −6.07532791639906062678841387694, −5.29467247491462988957264445627, −5.05405142391636705100854410244, −3.89478895266724071244657431064, −3.07798590356295717196796986122, −2.34913880795537966223492470966, −1.31309828122034037608229063502, 0, 1.31309828122034037608229063502, 2.34913880795537966223492470966, 3.07798590356295717196796986122, 3.89478895266724071244657431064, 5.05405142391636705100854410244, 5.29467247491462988957264445627, 6.07532791639906062678841387694, 7.16956921683940196291798479440, 7.48236774658715995686815740232

Graph of the $Z$-function along the critical line