Properties

Degree $4$
Conductor $49787136$
Sign $1$
Motivic weight $1$
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s − 11-s − 5·13-s − 8·17-s − 5·19-s + 8·23-s + 5·25-s − 3·29-s − 2·31-s + 3·37-s + 6·41-s + 7·43-s + 12·47-s − 11·53-s + 55-s − 5·59-s − 20·61-s + 5·65-s − 7·67-s + 4·71-s + 73-s − 8·79-s − 7·83-s + 8·85-s − 6·89-s + 5·95-s − 25·97-s + ⋯
L(s)  = 1  − 0.447·5-s − 0.301·11-s − 1.38·13-s − 1.94·17-s − 1.14·19-s + 1.66·23-s + 25-s − 0.557·29-s − 0.359·31-s + 0.493·37-s + 0.937·41-s + 1.06·43-s + 1.75·47-s − 1.51·53-s + 0.134·55-s − 0.650·59-s − 2.56·61-s + 0.620·65-s − 0.855·67-s + 0.474·71-s + 0.117·73-s − 0.900·79-s − 0.768·83-s + 0.867·85-s − 0.635·89-s + 0.512·95-s − 2.53·97-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 49787136 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 49787136 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(49787136\)    =    \(2^{8} \cdot 3^{4} \cdot 7^{4}\)
Sign: $1$
Motivic weight: \(1\)
Character: induced by $\chi_{7056} (1, \cdot )$
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 49787136,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 \)
good5$C_2^2$ \( 1 + T - 4 T^{2} + p T^{3} + p^{2} T^{4} \)
11$D_{4}$ \( 1 + T + 8 T^{2} + p T^{3} + p^{2} T^{4} \)
13$D_{4}$ \( 1 + 5 T + 18 T^{2} + 5 p T^{3} + p^{2} T^{4} \)
17$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
19$D_{4}$ \( 1 + 5 T + 30 T^{2} + 5 p T^{3} + p^{2} T^{4} \)
23$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
29$D_{4}$ \( 1 + 3 T + 46 T^{2} + 3 p T^{3} + p^{2} T^{4} \)
31$C_2$ \( ( 1 + T + p T^{2} )^{2} \)
37$D_{4}$ \( 1 - 3 T + 62 T^{2} - 3 p T^{3} + p^{2} T^{4} \)
41$D_{4}$ \( 1 - 6 T + 34 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
43$D_{4}$ \( 1 - 7 T + 84 T^{2} - 7 p T^{3} + p^{2} T^{4} \)
47$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
53$D_{4}$ \( 1 + 11 T + 122 T^{2} + 11 p T^{3} + p^{2} T^{4} \)
59$D_{4}$ \( 1 + 5 T + 110 T^{2} + 5 p T^{3} + p^{2} T^{4} \)
61$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
67$D_{4}$ \( 1 + 7 T + 132 T^{2} + 7 p T^{3} + p^{2} T^{4} \)
71$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
73$D_{4}$ \( 1 - T + 132 T^{2} - p T^{3} + p^{2} T^{4} \)
79$D_{4}$ \( 1 + 8 T + 117 T^{2} + 8 p T^{3} + p^{2} T^{4} \)
83$D_{4}$ \( 1 + 7 T + 164 T^{2} + 7 p T^{3} + p^{2} T^{4} \)
89$D_{4}$ \( 1 + 6 T + 130 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
97$D_{4}$ \( 1 + 25 T + 336 T^{2} + 25 p T^{3} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.63724376452629279997646846898, −7.36447868010732954010391574373, −7.17638395811140182612864436941, −6.81051372762930259694065079828, −6.27596183184069741843660313223, −6.26329866346852993259936709351, −5.50387914382833609014061776968, −5.34996742665071223781701488900, −4.78687111054456079028808124550, −4.48768488650455100103462741734, −4.15507683660874113359597880048, −4.13605463462231984861711202378, −3.09936875335235917136732232050, −2.91440792523149992233732402865, −2.59384201415772275546554883824, −2.15615640660818966884308039621, −1.58857712517828833885757977931, −0.972466327584171584956954989671, 0, 0, 0.972466327584171584956954989671, 1.58857712517828833885757977931, 2.15615640660818966884308039621, 2.59384201415772275546554883824, 2.91440792523149992233732402865, 3.09936875335235917136732232050, 4.13605463462231984861711202378, 4.15507683660874113359597880048, 4.48768488650455100103462741734, 4.78687111054456079028808124550, 5.34996742665071223781701488900, 5.50387914382833609014061776968, 6.26329866346852993259936709351, 6.27596183184069741843660313223, 6.81051372762930259694065079828, 7.17638395811140182612864436941, 7.36447868010732954010391574373, 7.63724376452629279997646846898

Graph of the $Z$-function along the critical line