Properties

Degree $2$
Conductor $7056$
Sign $1$
Motivic weight $1$
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  − 3.41·5-s + 0.828·11-s − 4.24·13-s − 7.41·17-s − 6.82·19-s − 4.82·23-s + 6.65·25-s − 2.82·29-s + 2.82·31-s − 1.65·37-s − 10.2·41-s + 11.3·43-s − 4.48·47-s + 2·53-s − 2.82·55-s + 8.48·59-s + 11.0·61-s + 14.4·65-s − 11.3·67-s − 10.4·71-s + 7.75·73-s − 13.6·79-s − 4·83-s + 25.3·85-s − 5.75·89-s + 23.3·95-s − 0.242·97-s + ⋯
L(s)  = 1  − 1.52·5-s + 0.249·11-s − 1.17·13-s − 1.79·17-s − 1.56·19-s − 1.00·23-s + 1.33·25-s − 0.525·29-s + 0.508·31-s − 0.272·37-s − 1.59·41-s + 1.72·43-s − 0.654·47-s + 0.274·53-s − 0.381·55-s + 1.10·59-s + 1.41·61-s + 1.79·65-s − 1.38·67-s − 1.24·71-s + 0.907·73-s − 1.53·79-s − 0.439·83-s + 2.74·85-s − 0.610·89-s + 2.39·95-s − 0.0246·97-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7056 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7056 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7056\)    =    \(2^{4} \cdot 3^{2} \cdot 7^{2}\)
Sign: $1$
Motivic weight: \(1\)
Character: $\chi_{7056} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 7056,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.3145348885\)
\(L(\frac12)\) \(\approx\) \(0.3145348885\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 \)
good5 \( 1 + 3.41T + 5T^{2} \)
11 \( 1 - 0.828T + 11T^{2} \)
13 \( 1 + 4.24T + 13T^{2} \)
17 \( 1 + 7.41T + 17T^{2} \)
19 \( 1 + 6.82T + 19T^{2} \)
23 \( 1 + 4.82T + 23T^{2} \)
29 \( 1 + 2.82T + 29T^{2} \)
31 \( 1 - 2.82T + 31T^{2} \)
37 \( 1 + 1.65T + 37T^{2} \)
41 \( 1 + 10.2T + 41T^{2} \)
43 \( 1 - 11.3T + 43T^{2} \)
47 \( 1 + 4.48T + 47T^{2} \)
53 \( 1 - 2T + 53T^{2} \)
59 \( 1 - 8.48T + 59T^{2} \)
61 \( 1 - 11.0T + 61T^{2} \)
67 \( 1 + 11.3T + 67T^{2} \)
71 \( 1 + 10.4T + 71T^{2} \)
73 \( 1 - 7.75T + 73T^{2} \)
79 \( 1 + 13.6T + 79T^{2} \)
83 \( 1 + 4T + 83T^{2} \)
89 \( 1 + 5.75T + 89T^{2} \)
97 \( 1 + 0.242T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.012437678770445184436892882848, −7.14078403119717017939989591176, −6.82020922478327883916631513480, −5.92027569394826114739053773209, −4.80559736765093845296889035846, −4.28302287724941254840806905527, −3.83543487038440203422024619340, −2.68571669290287719778029408696, −1.94528330907915967234986383116, −0.26697693438307821778195009369, 0.26697693438307821778195009369, 1.94528330907915967234986383116, 2.68571669290287719778029408696, 3.83543487038440203422024619340, 4.28302287724941254840806905527, 4.80559736765093845296889035846, 5.92027569394826114739053773209, 6.82020922478327883916631513480, 7.14078403119717017939989591176, 8.012437678770445184436892882848

Graph of the $Z$-function along the critical line