Properties

 Degree $2$ Conductor $7056$ Sign $1$ Motivic weight $1$ Primitive yes Self-dual yes Analytic rank $0$

Learn more about

Dirichlet series

 L(s)  = 1 − 3.41·5-s + 0.828·11-s − 4.24·13-s − 7.41·17-s − 6.82·19-s − 4.82·23-s + 6.65·25-s − 2.82·29-s + 2.82·31-s − 1.65·37-s − 10.2·41-s + 11.3·43-s − 4.48·47-s + 2·53-s − 2.82·55-s + 8.48·59-s + 11.0·61-s + 14.4·65-s − 11.3·67-s − 10.4·71-s + 7.75·73-s − 13.6·79-s − 4·83-s + 25.3·85-s − 5.75·89-s + 23.3·95-s − 0.242·97-s + ⋯
 L(s)  = 1 − 1.52·5-s + 0.249·11-s − 1.17·13-s − 1.79·17-s − 1.56·19-s − 1.00·23-s + 1.33·25-s − 0.525·29-s + 0.508·31-s − 0.272·37-s − 1.59·41-s + 1.72·43-s − 0.654·47-s + 0.274·53-s − 0.381·55-s + 1.10·59-s + 1.41·61-s + 1.79·65-s − 1.38·67-s − 1.24·71-s + 0.907·73-s − 1.53·79-s − 0.439·83-s + 2.74·85-s − 0.610·89-s + 2.39·95-s − 0.0246·97-s + ⋯

Functional equation

\begin{aligned}\Lambda(s)=\mathstrut & 7056 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}
\begin{aligned}\Lambda(s)=\mathstrut & 7056 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}

Invariants

 Degree: $$2$$ Conductor: $$7056$$    =    $$2^{4} \cdot 3^{2} \cdot 7^{2}$$ Sign: $1$ Motivic weight: $$1$$ Character: $\chi_{7056} (1, \cdot )$ Primitive: yes Self-dual: yes Analytic rank: $$0$$ Selberg data: $$(2,\ 7056,\ (\ :1/2),\ 1)$$

Particular Values

 $$L(1)$$ $$\approx$$ $$0.3145348885$$ $$L(\frac12)$$ $$\approx$$ $$0.3145348885$$ $$L(\frac{3}{2})$$ not available $$L(1)$$ not available

Euler product

$$L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}$$
$p$$F_p(T)$
bad2 $$1$$
3 $$1$$
7 $$1$$
good5 $$1 + 3.41T + 5T^{2}$$
11 $$1 - 0.828T + 11T^{2}$$
13 $$1 + 4.24T + 13T^{2}$$
17 $$1 + 7.41T + 17T^{2}$$
19 $$1 + 6.82T + 19T^{2}$$
23 $$1 + 4.82T + 23T^{2}$$
29 $$1 + 2.82T + 29T^{2}$$
31 $$1 - 2.82T + 31T^{2}$$
37 $$1 + 1.65T + 37T^{2}$$
41 $$1 + 10.2T + 41T^{2}$$
43 $$1 - 11.3T + 43T^{2}$$
47 $$1 + 4.48T + 47T^{2}$$
53 $$1 - 2T + 53T^{2}$$
59 $$1 - 8.48T + 59T^{2}$$
61 $$1 - 11.0T + 61T^{2}$$
67 $$1 + 11.3T + 67T^{2}$$
71 $$1 + 10.4T + 71T^{2}$$
73 $$1 - 7.75T + 73T^{2}$$
79 $$1 + 13.6T + 79T^{2}$$
83 $$1 + 4T + 83T^{2}$$
89 $$1 + 5.75T + 89T^{2}$$
97 $$1 + 0.242T + 97T^{2}$$
show more
show less
$$L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}$$

Imaginary part of the first few zeros on the critical line

−8.012437678770445184436892882848, −7.14078403119717017939989591176, −6.82020922478327883916631513480, −5.92027569394826114739053773209, −4.80559736765093845296889035846, −4.28302287724941254840806905527, −3.83543487038440203422024619340, −2.68571669290287719778029408696, −1.94528330907915967234986383116, −0.26697693438307821778195009369, 0.26697693438307821778195009369, 1.94528330907915967234986383116, 2.68571669290287719778029408696, 3.83543487038440203422024619340, 4.28302287724941254840806905527, 4.80559736765093845296889035846, 5.92027569394826114739053773209, 6.82020922478327883916631513480, 7.14078403119717017939989591176, 8.012437678770445184436892882848