L(s) = 1 | + (0.866 + 0.5i)2-s + (0.499 + 0.866i)4-s + (0.515 − 0.297i)5-s + (1.45 + 0.838i)7-s + 0.999i·8-s + 0.594·10-s + (−0.416 − 0.240i)11-s + (3.56 − 0.567i)13-s + (0.838 + 1.45i)14-s + (−0.5 + 0.866i)16-s + 2.09·17-s − 0.480i·19-s + (0.515 + 0.297i)20-s + (−0.240 − 0.416i)22-s + (1.83 + 3.17i)23-s + ⋯ |
L(s) = 1 | + (0.612 + 0.353i)2-s + (0.249 + 0.433i)4-s + (0.230 − 0.132i)5-s + (0.548 + 0.316i)7-s + 0.353i·8-s + 0.188·10-s + (−0.125 − 0.0724i)11-s + (0.987 − 0.157i)13-s + (0.224 + 0.388i)14-s + (−0.125 + 0.216i)16-s + 0.507·17-s − 0.110i·19-s + (0.115 + 0.0664i)20-s + (−0.0512 − 0.0887i)22-s + (0.382 + 0.662i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 702 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.705 - 0.709i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 702 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.705 - 0.709i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.22942 + 0.926973i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.22942 + 0.926973i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.866 - 0.5i)T \) |
| 3 | \( 1 \) |
| 13 | \( 1 + (-3.56 + 0.567i)T \) |
good | 5 | \( 1 + (-0.515 + 0.297i)T + (2.5 - 4.33i)T^{2} \) |
| 7 | \( 1 + (-1.45 - 0.838i)T + (3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (0.416 + 0.240i)T + (5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 - 2.09T + 17T^{2} \) |
| 19 | \( 1 + 0.480iT - 19T^{2} \) |
| 23 | \( 1 + (-1.83 - 3.17i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (1.23 - 2.13i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-0.993 + 0.573i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + 3.65iT - 37T^{2} \) |
| 41 | \( 1 + (-8.58 + 4.95i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (3.45 - 5.98i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (5.40 + 3.12i)T + (23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 - 5.08T + 53T^{2} \) |
| 59 | \( 1 + (-8.13 + 4.69i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (3.90 - 6.76i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (12.4 - 7.19i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 6.51iT - 71T^{2} \) |
| 73 | \( 1 + 5.91iT - 73T^{2} \) |
| 79 | \( 1 + (-1.02 + 1.78i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (9.57 + 5.53i)T + (41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 - 9.48iT - 89T^{2} \) |
| 97 | \( 1 + (8.41 + 4.85i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.78315197199849027285797701497, −9.592802863654586792566496833266, −8.701383467181831041511665008553, −7.893027926862709056775711823610, −7.00326527939483287440494406414, −5.81725365099798842751864612680, −5.34165087034139344416376017067, −4.12762690748484553119969385242, −3.08103187149462782661534812945, −1.60151343336287990313854079832,
1.28606684486683051752915762382, 2.62710185549187051602414742813, 3.85236720584731733517114644776, 4.72640719593746381417411072360, 5.81540534142483901229386943669, 6.58542408322138423306129744978, 7.73154410452094398895859850978, 8.579780653122690991659119920374, 9.717066732556802214401857735673, 10.49410209052021618177041972864