| L(s) = 1 | + (−0.707 + 0.707i)2-s − 1.00i·4-s + (0.964 + 3.60i)5-s + (−0.861 − 3.21i)7-s + (0.707 + 0.707i)8-s + (−3.22 − 1.86i)10-s + (−4.48 − 4.48i)11-s + (−0.905 − 3.49i)13-s + (2.88 + 1.66i)14-s − 1.00·16-s + (−1.38 − 2.39i)17-s + (0.703 − 2.62i)19-s + (3.60 − 0.964i)20-s + 6.34·22-s + (−0.0915 − 0.158i)23-s + ⋯ |
| L(s) = 1 | + (−0.499 + 0.499i)2-s − 0.500i·4-s + (0.431 + 1.61i)5-s + (−0.325 − 1.21i)7-s + (0.250 + 0.250i)8-s + (−1.02 − 0.589i)10-s + (−1.35 − 1.35i)11-s + (−0.251 − 0.967i)13-s + (0.769 + 0.444i)14-s − 0.250·16-s + (−0.335 − 0.581i)17-s + (0.161 − 0.602i)19-s + (0.805 − 0.215i)20-s + 1.35·22-s + (−0.0190 − 0.0330i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 702 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.346 + 0.938i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 702 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.346 + 0.938i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.559476 - 0.389882i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.559476 - 0.389882i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (0.707 - 0.707i)T \) |
| 3 | \( 1 \) |
| 13 | \( 1 + (0.905 + 3.49i)T \) |
| good | 5 | \( 1 + (-0.964 - 3.60i)T + (-4.33 + 2.5i)T^{2} \) |
| 7 | \( 1 + (0.861 + 3.21i)T + (-6.06 + 3.5i)T^{2} \) |
| 11 | \( 1 + (4.48 + 4.48i)T + 11iT^{2} \) |
| 17 | \( 1 + (1.38 + 2.39i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-0.703 + 2.62i)T + (-16.4 - 9.5i)T^{2} \) |
| 23 | \( 1 + (0.0915 + 0.158i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + 0.948iT - 29T^{2} \) |
| 31 | \( 1 + (-2.14 + 0.573i)T + (26.8 - 15.5i)T^{2} \) |
| 37 | \( 1 + (-1.96 - 7.33i)T + (-32.0 + 18.5i)T^{2} \) |
| 41 | \( 1 + (2.27 + 0.610i)T + (35.5 + 20.5i)T^{2} \) |
| 43 | \( 1 + (3.17 + 1.83i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-1.38 + 5.15i)T + (-40.7 - 23.5i)T^{2} \) |
| 53 | \( 1 - 3.43iT - 53T^{2} \) |
| 59 | \( 1 + (3.31 + 3.31i)T + 59iT^{2} \) |
| 61 | \( 1 + (-4.13 + 7.17i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-1.93 + 7.21i)T + (-58.0 - 33.5i)T^{2} \) |
| 71 | \( 1 + (11.7 + 3.16i)T + (61.4 + 35.5i)T^{2} \) |
| 73 | \( 1 + (-2.16 + 2.16i)T - 73iT^{2} \) |
| 79 | \( 1 + (-6.31 - 10.9i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (6.52 + 1.74i)T + (71.8 + 41.5i)T^{2} \) |
| 89 | \( 1 + (0.643 - 0.172i)T + (77.0 - 44.5i)T^{2} \) |
| 97 | \( 1 + (5.65 - 1.51i)T + (84.0 - 48.5i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.38823633997665408010222029890, −9.685940782648683344211723994576, −8.299880218734508427556399147221, −7.56260082290741163251127159102, −6.85718142147290941338837232053, −6.08773884086456548314705798032, −5.07328160542213041507480871610, −3.36779762390802410726769632681, −2.65761602345240039215628053648, −0.40112822057771670174125492678,
1.69717522830948233249489389230, 2.47806357076584442526316094104, 4.29495161012817748177620714450, 5.09159339387421275037763961580, 5.97251187259771703167037694204, 7.38090894584164026772520615818, 8.364148099504802990390560209067, 8.992983445759592440556216572600, 9.648477261608460840866076253423, 10.30467016195746734912501266288