Properties

Degree $2$
Conductor $700$
Sign $0.502 + 0.864i$
Motivic weight $1$
Primitive yes
Self-dual no
Analytic rank $1$

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (0.366 + 1.36i)2-s + (−1.5 + 0.866i)3-s + (−1.73 + i)4-s + (−1.73 − 1.73i)6-s + (−2 + 1.73i)7-s + (−2 − 1.99i)8-s + (0.866 − 0.5i)11-s + (1.73 − 3i)12-s − 3.46·13-s + (−3.09 − 2.09i)14-s + (1.99 − 3.46i)16-s + (0.866 + 1.5i)17-s + (2.59 − 4.5i)19-s + (1.50 − 4.33i)21-s + (1 + 0.999i)22-s + (−0.5 + 0.866i)23-s + ⋯
L(s)  = 1  + (0.258 + 0.965i)2-s + (−0.866 + 0.499i)3-s + (−0.866 + 0.5i)4-s + (−0.707 − 0.707i)6-s + (−0.755 + 0.654i)7-s + (−0.707 − 0.707i)8-s + (0.261 − 0.150i)11-s + (0.499 − 0.866i)12-s − 0.960·13-s + (−0.827 − 0.560i)14-s + (0.499 − 0.866i)16-s + (0.210 + 0.363i)17-s + (0.596 − 1.03i)19-s + (0.327 − 0.944i)21-s + (0.213 + 0.213i)22-s + (−0.104 + 0.180i)23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.502 + 0.864i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 700 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.502 + 0.864i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(700\)    =    \(2^{2} \cdot 5^{2} \cdot 7\)
Sign: $0.502 + 0.864i$
Motivic weight: \(1\)
Character: $\chi_{700} (299, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(1\)
Selberg data: \((2,\ 700,\ (\ :1/2),\ 0.502 + 0.864i)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.366 - 1.36i)T \)
5 \( 1 \)
7 \( 1 + (2 - 1.73i)T \)
good3 \( 1 + (1.5 - 0.866i)T + (1.5 - 2.59i)T^{2} \)
11 \( 1 + (-0.866 + 0.5i)T + (5.5 - 9.52i)T^{2} \)
13 \( 1 + 3.46T + 13T^{2} \)
17 \( 1 + (-0.866 - 1.5i)T + (-8.5 + 14.7i)T^{2} \)
19 \( 1 + (-2.59 + 4.5i)T + (-9.5 - 16.4i)T^{2} \)
23 \( 1 + (0.5 - 0.866i)T + (-11.5 - 19.9i)T^{2} \)
29 \( 1 + 4T + 29T^{2} \)
31 \( 1 + (0.866 + 1.5i)T + (-15.5 + 26.8i)T^{2} \)
37 \( 1 + (-2.59 - 1.5i)T + (18.5 + 32.0i)T^{2} \)
41 \( 1 + 3.46iT - 41T^{2} \)
43 \( 1 - 2T + 43T^{2} \)
47 \( 1 + (7.5 + 4.33i)T + (23.5 + 40.7i)T^{2} \)
53 \( 1 + (0.866 - 0.5i)T + (26.5 - 45.8i)T^{2} \)
59 \( 1 + (-2.59 - 4.5i)T + (-29.5 + 51.0i)T^{2} \)
61 \( 1 + (4.5 + 2.59i)T + (30.5 + 52.8i)T^{2} \)
67 \( 1 + (1.5 + 2.59i)T + (-33.5 + 58.0i)T^{2} \)
71 \( 1 - 14iT - 71T^{2} \)
73 \( 1 + (-4.33 - 7.5i)T + (-36.5 + 63.2i)T^{2} \)
79 \( 1 + (7.79 + 4.5i)T + (39.5 + 68.4i)T^{2} \)
83 \( 1 + 13.8iT - 83T^{2} \)
89 \( 1 + (13.5 + 7.79i)T + (44.5 + 77.0i)T^{2} \)
97 \( 1 + 17.3T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.03590938697895814323944038614, −9.482950740475853154850262529895, −8.578142902864523547717124533244, −7.47457579605821980622061543019, −6.60719548535132736608479386710, −5.69160011151600175782804437617, −5.16839598387022676127077856254, −4.11056799359014177845823238096, −2.82535537886469655401796563754, 0, 1.35875752573773810669244344562, 2.95585148792669214423101273942, 3.98288927177179315572824353925, 5.14450797898659285188970422895, 6.00802259076958612267629136481, 6.91643814560194720328877919890, 7.917279309222902455252546946437, 9.404063633507386959706419921209, 9.775858298332276670377244079219

Graph of the $Z$-function along the critical line