Properties

Label 8-700e4-1.1-c1e4-0-3
Degree $8$
Conductor $240100000000$
Sign $1$
Analytic cond. $976.114$
Root an. cond. $2.36421$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·2-s + 8·4-s + 8·8-s − 4·16-s − 20·29-s − 32·32-s − 12·37-s + 10·49-s − 16·53-s − 80·58-s − 64·64-s − 48·74-s − 18·81-s + 40·98-s − 64·106-s − 60·109-s + 44·113-s − 160·116-s − 6·121-s + 127-s − 64·128-s + 131-s + 137-s + 139-s − 96·148-s + 149-s + 151-s + ⋯
L(s)  = 1  + 2.82·2-s + 4·4-s + 2.82·8-s − 16-s − 3.71·29-s − 5.65·32-s − 1.97·37-s + 10/7·49-s − 2.19·53-s − 10.5·58-s − 8·64-s − 5.57·74-s − 2·81-s + 4.04·98-s − 6.21·106-s − 5.74·109-s + 4.13·113-s − 14.8·116-s − 0.545·121-s + 0.0887·127-s − 5.65·128-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 7.89·148-s + 0.0819·149-s + 0.0813·151-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 5^{8} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 5^{8} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{8} \cdot 5^{8} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(976.114\)
Root analytic conductor: \(2.36421\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{8} \cdot 5^{8} \cdot 7^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(2.132837469\)
\(L(\frac12)\) \(\approx\) \(2.132837469\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( ( 1 - p T + p T^{2} )^{2} \)
5 \( 1 \)
7$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
good3$C_2^2$ \( ( 1 + p^{2} T^{4} )^{2} \)
11$C_2^2$ \( ( 1 + 3 T^{2} + p^{2} T^{4} )^{2} \)
13$C_2^2$ \( ( 1 - 20 T^{2} + p^{2} T^{4} )^{2} \)
17$C_2^2$ \( ( 1 - 10 T^{2} + p^{2} T^{4} )^{2} \)
19$C_2$ \( ( 1 + p T^{2} )^{4} \)
23$C_2^2$ \( ( 1 - 45 T^{2} + p^{2} T^{4} )^{2} \)
29$C_2$ \( ( 1 + 5 T + p T^{2} )^{4} \)
31$C_2^2$ \( ( 1 + 8 T^{2} + p^{2} T^{4} )^{2} \)
37$C_2$ \( ( 1 + 3 T + p T^{2} )^{4} \)
41$C_2^2$ \( ( 1 + 68 T^{2} + p^{2} T^{4} )^{2} \)
43$C_2^2$ \( ( 1 + 35 T^{2} + p^{2} T^{4} )^{2} \)
47$C_2^2$ \( ( 1 + 70 T^{2} + p^{2} T^{4} )^{2} \)
53$C_2$ \( ( 1 + 4 T + p T^{2} )^{4} \)
59$C_2^2$ \( ( 1 - 32 T^{2} + p^{2} T^{4} )^{2} \)
61$C_2^2$ \( ( 1 + 28 T^{2} + p^{2} T^{4} )^{2} \)
67$C_2^2$ \( ( 1 - 125 T^{2} + p^{2} T^{4} )^{2} \)
71$C_2^2$ \( ( 1 - 117 T^{2} + p^{2} T^{4} )^{2} \)
73$C_2^2$ \( ( 1 - 140 T^{2} + p^{2} T^{4} )^{2} \)
79$C_2^2$ \( ( 1 - 77 T^{2} + p^{2} T^{4} )^{2} \)
83$C_2^2$ \( ( 1 + 160 T^{2} + p^{2} T^{4} )^{2} \)
89$C_2^2$ \( ( 1 - 172 T^{2} + p^{2} T^{4} )^{2} \)
97$C_2^2$ \( ( 1 - 140 T^{2} + p^{2} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.33603934988985543194578476251, −7.15890708456581685775623366036, −7.10453254970657288572452762871, −6.52957381659368619202951981033, −6.49215603335186274682406037013, −6.20982657808185776701927523402, −6.00823123341572054510092192746, −5.75982599054109470485272139701, −5.38005185479948006116091359946, −5.28466109350992982297749775141, −5.21951890903477043774803595325, −5.03332184204284970418156973161, −4.45691612973383970469121465518, −4.34246573874357043484016938887, −3.97302133457048139043460613086, −3.89539643778979726450819971188, −3.71281574786044364648898328731, −3.25462283823779950129963305013, −3.10441690704221457358367747587, −2.84154108215813445422199488833, −2.40132893601016522308064971155, −2.07287317658215946414262142072, −1.71604336752395738307051425510, −1.45764750146481887134915823969, −0.20929946574667686533003357444, 0.20929946574667686533003357444, 1.45764750146481887134915823969, 1.71604336752395738307051425510, 2.07287317658215946414262142072, 2.40132893601016522308064971155, 2.84154108215813445422199488833, 3.10441690704221457358367747587, 3.25462283823779950129963305013, 3.71281574786044364648898328731, 3.89539643778979726450819971188, 3.97302133457048139043460613086, 4.34246573874357043484016938887, 4.45691612973383970469121465518, 5.03332184204284970418156973161, 5.21951890903477043774803595325, 5.28466109350992982297749775141, 5.38005185479948006116091359946, 5.75982599054109470485272139701, 6.00823123341572054510092192746, 6.20982657808185776701927523402, 6.49215603335186274682406037013, 6.52957381659368619202951981033, 7.10453254970657288572452762871, 7.15890708456581685775623366036, 7.33603934988985543194578476251

Graph of the $Z$-function along the critical line