Properties

Label 16-7e8-1.1-c8e8-0-0
Degree $16$
Conductor $5764801$
Sign $1$
Analytic cond. $4372.90$
Root an. cond. $1.68868$
Motivic weight $8$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·2-s − 84·3-s + 438·4-s − 840·5-s + 336·6-s − 140·7-s − 232·8-s − 9.39e3·9-s + 3.36e3·10-s + 1.78e3·11-s − 3.67e4·12-s + 560·14-s + 7.05e4·15-s + 9.82e4·16-s − 1.41e5·17-s + 3.75e4·18-s − 2.57e5·19-s − 3.67e5·20-s + 1.17e4·21-s − 7.13e3·22-s − 3.48e5·23-s + 1.94e4·24-s − 7.07e5·25-s + 9.86e5·27-s − 6.13e4·28-s + 4.98e6·29-s − 2.82e5·30-s + ⋯
L(s)  = 1  − 1/4·2-s − 1.03·3-s + 1.71·4-s − 1.34·5-s + 7/27·6-s − 0.0583·7-s − 0.0566·8-s − 1.43·9-s + 0.335·10-s + 0.121·11-s − 1.77·12-s + 0.0145·14-s + 1.39·15-s + 1.49·16-s − 1.69·17-s + 0.358·18-s − 1.97·19-s − 2.29·20-s + 0.0604·21-s − 0.0304·22-s − 1.24·23-s + 0.0587·24-s − 1.81·25-s + 1.85·27-s − 0.0997·28-s + 7.04·29-s − 0.348·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5764801 ^{s/2} \, \Gamma_{\C}(s)^{8} \, L(s)\cr =\mathstrut & \, \Lambda(9-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5764801 ^{s/2} \, \Gamma_{\C}(s+4)^{8} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(16\)
Conductor: \(5764801\)    =    \(7^{8}\)
Sign: $1$
Analytic conductor: \(4372.90\)
Root analytic conductor: \(1.68868\)
Motivic weight: \(8\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((16,\ 5764801,\ (\ :[4]^{8}),\ 1)\)

Particular Values

\(L(\frac{9}{2})\) \(\approx\) \(1.133955793\)
\(L(\frac12)\) \(\approx\) \(1.133955793\)
\(L(5)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 + 20 p T + 5584 p^{3} T^{2} + 34180 p^{6} T^{3} - 146722 p^{10} T^{4} + 34180 p^{14} T^{5} + 5584 p^{19} T^{6} + 20 p^{25} T^{7} + p^{32} T^{8} \)
good2 \( 1 + p^{2} T - 211 p T^{2} - 401 p^{3} T^{3} + 18669 p^{2} T^{4} + 26973 p^{5} T^{5} + 438931 p^{5} T^{6} - 422859 p^{8} T^{7} - 25012319 p^{8} T^{8} - 422859 p^{16} T^{9} + 438931 p^{21} T^{10} + 26973 p^{29} T^{11} + 18669 p^{34} T^{12} - 401 p^{43} T^{13} - 211 p^{49} T^{14} + p^{58} T^{15} + p^{64} T^{16} \)
3 \( 1 + 28 p T + 1828 p^{2} T^{2} + 131600 p^{2} T^{3} + 5731589 p^{3} T^{4} + 578321716 p^{3} T^{5} + 47201431972 p^{3} T^{6} + 187457977616 p^{6} T^{7} + 1227926322544 p^{8} T^{8} + 187457977616 p^{14} T^{9} + 47201431972 p^{19} T^{10} + 578321716 p^{27} T^{11} + 5731589 p^{35} T^{12} + 131600 p^{42} T^{13} + 1828 p^{50} T^{14} + 28 p^{57} T^{15} + p^{64} T^{16} \)
5 \( 1 + 168 p T + 1412926 T^{2} + 197857968 p T^{3} + 963491077201 T^{4} + 91893714315984 p T^{5} + 15265912316977486 p^{2} T^{6} + 1133093210050933656 p^{3} T^{7} + \)\(20\!\cdots\!56\)\( p^{4} T^{8} + 1133093210050933656 p^{11} T^{9} + 15265912316977486 p^{18} T^{10} + 91893714315984 p^{25} T^{11} + 963491077201 p^{32} T^{12} + 197857968 p^{41} T^{13} + 1412926 p^{48} T^{14} + 168 p^{57} T^{15} + p^{64} T^{16} \)
11 \( 1 - 1784 T - 333848516 T^{2} + 1417907526152 T^{3} - 3397673438524281 T^{4} - 13244519048971696380 p T^{5} - \)\(72\!\cdots\!96\)\( T^{6} - \)\(15\!\cdots\!72\)\( T^{7} + \)\(57\!\cdots\!72\)\( T^{8} - \)\(15\!\cdots\!72\)\( p^{8} T^{9} - \)\(72\!\cdots\!96\)\( p^{16} T^{10} - 13244519048971696380 p^{25} T^{11} - 3397673438524281 p^{32} T^{12} + 1417907526152 p^{40} T^{13} - 333848516 p^{48} T^{14} - 1784 p^{56} T^{15} + p^{64} T^{16} \)
13 \( 1 - 3599704928 T^{2} + 6293879827435246396 T^{4} - \)\(73\!\cdots\!48\)\( T^{6} + \)\(65\!\cdots\!34\)\( T^{8} - \)\(73\!\cdots\!48\)\( p^{16} T^{10} + 6293879827435246396 p^{32} T^{12} - 3599704928 p^{48} T^{14} + p^{64} T^{16} \)
17 \( 1 + 141456 T + 24752467462 T^{2} + 2557882950722400 T^{3} + \)\(31\!\cdots\!53\)\( T^{4} + \)\(34\!\cdots\!68\)\( T^{5} + \)\(33\!\cdots\!54\)\( T^{6} + \)\(19\!\cdots\!28\)\( p T^{7} + \)\(86\!\cdots\!16\)\( p^{2} T^{8} + \)\(19\!\cdots\!28\)\( p^{9} T^{9} + \)\(33\!\cdots\!54\)\( p^{16} T^{10} + \)\(34\!\cdots\!68\)\( p^{24} T^{11} + \)\(31\!\cdots\!53\)\( p^{32} T^{12} + 2557882950722400 p^{40} T^{13} + 24752467462 p^{48} T^{14} + 141456 p^{56} T^{15} + p^{64} T^{16} \)
19 \( 1 + 257544 T + 70009367908 T^{2} + 12336288216616224 T^{3} + \)\(20\!\cdots\!39\)\( T^{4} + \)\(30\!\cdots\!20\)\( T^{5} + \)\(43\!\cdots\!52\)\( T^{6} + \)\(61\!\cdots\!88\)\( T^{7} + \)\(82\!\cdots\!52\)\( T^{8} + \)\(61\!\cdots\!88\)\( p^{8} T^{9} + \)\(43\!\cdots\!52\)\( p^{16} T^{10} + \)\(30\!\cdots\!20\)\( p^{24} T^{11} + \)\(20\!\cdots\!39\)\( p^{32} T^{12} + 12336288216616224 p^{40} T^{13} + 70009367908 p^{48} T^{14} + 257544 p^{56} T^{15} + p^{64} T^{16} \)
23 \( 1 + 348940 T - 186978426644 T^{2} - 32676900622844200 T^{3} + \)\(35\!\cdots\!19\)\( T^{4} + \)\(26\!\cdots\!40\)\( T^{5} - \)\(40\!\cdots\!80\)\( T^{6} - \)\(10\!\cdots\!80\)\( T^{7} + \)\(34\!\cdots\!72\)\( T^{8} - \)\(10\!\cdots\!80\)\( p^{8} T^{9} - \)\(40\!\cdots\!80\)\( p^{16} T^{10} + \)\(26\!\cdots\!40\)\( p^{24} T^{11} + \)\(35\!\cdots\!19\)\( p^{32} T^{12} - 32676900622844200 p^{40} T^{13} - 186978426644 p^{48} T^{14} + 348940 p^{56} T^{15} + p^{64} T^{16} \)
29 \( ( 1 - 2491588 T + 3930639559056 T^{2} - 4191570786881848748 T^{3} + \)\(34\!\cdots\!34\)\( T^{4} - 4191570786881848748 p^{8} T^{5} + 3930639559056 p^{16} T^{6} - 2491588 p^{24} T^{7} + p^{32} T^{8} )^{2} \)
31 \( 1 + 2376696 T + 4495851115156 T^{2} + 6210203237206004064 T^{3} + \)\(70\!\cdots\!63\)\( T^{4} + \)\(75\!\cdots\!64\)\( T^{5} + \)\(78\!\cdots\!20\)\( T^{6} + \)\(78\!\cdots\!92\)\( T^{7} + \)\(76\!\cdots\!08\)\( T^{8} + \)\(78\!\cdots\!92\)\( p^{8} T^{9} + \)\(78\!\cdots\!20\)\( p^{16} T^{10} + \)\(75\!\cdots\!64\)\( p^{24} T^{11} + \)\(70\!\cdots\!63\)\( p^{32} T^{12} + 6210203237206004064 p^{40} T^{13} + 4495851115156 p^{48} T^{14} + 2376696 p^{56} T^{15} + p^{64} T^{16} \)
37 \( 1 - 492740 T - 6839200540314 T^{2} + 5004808393655458680 T^{3} + \)\(16\!\cdots\!69\)\( T^{4} - \)\(13\!\cdots\!40\)\( T^{5} - \)\(40\!\cdots\!30\)\( T^{6} + \)\(11\!\cdots\!20\)\( T^{7} + \)\(20\!\cdots\!12\)\( T^{8} + \)\(11\!\cdots\!20\)\( p^{8} T^{9} - \)\(40\!\cdots\!30\)\( p^{16} T^{10} - \)\(13\!\cdots\!40\)\( p^{24} T^{11} + \)\(16\!\cdots\!69\)\( p^{32} T^{12} + 5004808393655458680 p^{40} T^{13} - 6839200540314 p^{48} T^{14} - 492740 p^{56} T^{15} + p^{64} T^{16} \)
41 \( 1 - 37601617521056 T^{2} + \)\(67\!\cdots\!60\)\( T^{4} - \)\(78\!\cdots\!52\)\( T^{6} + \)\(69\!\cdots\!34\)\( T^{8} - \)\(78\!\cdots\!52\)\( p^{16} T^{10} + \)\(67\!\cdots\!60\)\( p^{32} T^{12} - 37601617521056 p^{48} T^{14} + p^{64} T^{16} \)
43 \( ( 1 - 2224216 T + 36058463751268 T^{2} - 59838646062515811848 T^{3} + \)\(58\!\cdots\!34\)\( T^{4} - 59838646062515811848 p^{8} T^{5} + 36058463751268 p^{16} T^{6} - 2224216 p^{24} T^{7} + p^{32} T^{8} )^{2} \)
47 \( 1 - 2704128 T + 43354016357404 T^{2} - \)\(11\!\cdots\!28\)\( T^{3} + \)\(86\!\cdots\!35\)\( T^{4} + \)\(26\!\cdots\!60\)\( T^{5} - \)\(76\!\cdots\!24\)\( T^{6} + \)\(20\!\cdots\!24\)\( T^{7} - \)\(69\!\cdots\!32\)\( T^{8} + \)\(20\!\cdots\!24\)\( p^{8} T^{9} - \)\(76\!\cdots\!24\)\( p^{16} T^{10} + \)\(26\!\cdots\!60\)\( p^{24} T^{11} + \)\(86\!\cdots\!35\)\( p^{32} T^{12} - \)\(11\!\cdots\!28\)\( p^{40} T^{13} + 43354016357404 p^{48} T^{14} - 2704128 p^{56} T^{15} + p^{64} T^{16} \)
53 \( 1 - 2281460 T - 194027845315466 T^{2} + \)\(48\!\cdots\!80\)\( T^{3} + \)\(21\!\cdots\!21\)\( T^{4} - \)\(44\!\cdots\!40\)\( T^{5} - \)\(17\!\cdots\!38\)\( T^{6} + \)\(13\!\cdots\!20\)\( T^{7} + \)\(11\!\cdots\!08\)\( T^{8} + \)\(13\!\cdots\!20\)\( p^{8} T^{9} - \)\(17\!\cdots\!38\)\( p^{16} T^{10} - \)\(44\!\cdots\!40\)\( p^{24} T^{11} + \)\(21\!\cdots\!21\)\( p^{32} T^{12} + \)\(48\!\cdots\!80\)\( p^{40} T^{13} - 194027845315466 p^{48} T^{14} - 2281460 p^{56} T^{15} + p^{64} T^{16} \)
59 \( 1 - 25291140 T + 442662123701212 T^{2} - \)\(58\!\cdots\!80\)\( T^{3} + \)\(47\!\cdots\!71\)\( T^{4} - \)\(33\!\cdots\!24\)\( p T^{5} - \)\(50\!\cdots\!36\)\( T^{6} + \)\(24\!\cdots\!88\)\( p T^{7} - \)\(20\!\cdots\!44\)\( T^{8} + \)\(24\!\cdots\!88\)\( p^{9} T^{9} - \)\(50\!\cdots\!36\)\( p^{16} T^{10} - \)\(33\!\cdots\!24\)\( p^{25} T^{11} + \)\(47\!\cdots\!71\)\( p^{32} T^{12} - \)\(58\!\cdots\!80\)\( p^{40} T^{13} + 442662123701212 p^{48} T^{14} - 25291140 p^{56} T^{15} + p^{64} T^{16} \)
61 \( 1 - 59368764 T + 2052606459885622 T^{2} - \)\(52\!\cdots\!60\)\( T^{3} + \)\(10\!\cdots\!05\)\( T^{4} - \)\(18\!\cdots\!72\)\( T^{5} + \)\(29\!\cdots\!94\)\( T^{6} - \)\(44\!\cdots\!08\)\( T^{7} + \)\(62\!\cdots\!84\)\( T^{8} - \)\(44\!\cdots\!08\)\( p^{8} T^{9} + \)\(29\!\cdots\!94\)\( p^{16} T^{10} - \)\(18\!\cdots\!72\)\( p^{24} T^{11} + \)\(10\!\cdots\!05\)\( p^{32} T^{12} - \)\(52\!\cdots\!60\)\( p^{40} T^{13} + 2052606459885622 p^{48} T^{14} - 59368764 p^{56} T^{15} + p^{64} T^{16} \)
67 \( 1 + 107108 T - 839204332190988 T^{2} - \)\(18\!\cdots\!44\)\( T^{3} + \)\(37\!\cdots\!55\)\( T^{4} + \)\(11\!\cdots\!96\)\( T^{5} + \)\(84\!\cdots\!16\)\( T^{6} - \)\(32\!\cdots\!36\)\( T^{7} - \)\(68\!\cdots\!16\)\( T^{8} - \)\(32\!\cdots\!36\)\( p^{8} T^{9} + \)\(84\!\cdots\!16\)\( p^{16} T^{10} + \)\(11\!\cdots\!96\)\( p^{24} T^{11} + \)\(37\!\cdots\!55\)\( p^{32} T^{12} - \)\(18\!\cdots\!44\)\( p^{40} T^{13} - 839204332190988 p^{48} T^{14} + 107108 p^{56} T^{15} + p^{64} T^{16} \)
71 \( ( 1 + 41404880 T + 3162773608457988 T^{2} + \)\(83\!\cdots\!72\)\( T^{3} + \)\(32\!\cdots\!98\)\( T^{4} + \)\(83\!\cdots\!72\)\( p^{8} T^{5} + 3162773608457988 p^{16} T^{6} + 41404880 p^{24} T^{7} + p^{32} T^{8} )^{2} \)
73 \( 1 - 116758404 T + 8148090587057374 T^{2} - \)\(42\!\cdots\!08\)\( T^{3} + \)\(17\!\cdots\!45\)\( T^{4} - \)\(65\!\cdots\!68\)\( T^{5} + \)\(21\!\cdots\!86\)\( T^{6} - \)\(66\!\cdots\!72\)\( T^{7} + \)\(19\!\cdots\!68\)\( T^{8} - \)\(66\!\cdots\!72\)\( p^{8} T^{9} + \)\(21\!\cdots\!86\)\( p^{16} T^{10} - \)\(65\!\cdots\!68\)\( p^{24} T^{11} + \)\(17\!\cdots\!45\)\( p^{32} T^{12} - \)\(42\!\cdots\!08\)\( p^{40} T^{13} + 8148090587057374 p^{48} T^{14} - 116758404 p^{56} T^{15} + p^{64} T^{16} \)
79 \( 1 + 50628092 T - 1644037081623204 T^{2} - \)\(20\!\cdots\!48\)\( T^{3} + \)\(47\!\cdots\!03\)\( T^{4} - \)\(41\!\cdots\!00\)\( T^{5} - \)\(54\!\cdots\!80\)\( T^{6} - \)\(48\!\cdots\!40\)\( T^{7} + \)\(31\!\cdots\!48\)\( T^{8} - \)\(48\!\cdots\!40\)\( p^{8} T^{9} - \)\(54\!\cdots\!80\)\( p^{16} T^{10} - \)\(41\!\cdots\!00\)\( p^{24} T^{11} + \)\(47\!\cdots\!03\)\( p^{32} T^{12} - \)\(20\!\cdots\!48\)\( p^{40} T^{13} - 1644037081623204 p^{48} T^{14} + 50628092 p^{56} T^{15} + p^{64} T^{16} \)
83 \( 1 - 11214933300710504 T^{2} + \)\(52\!\cdots\!64\)\( T^{4} - \)\(14\!\cdots\!32\)\( T^{6} + \)\(31\!\cdots\!18\)\( T^{8} - \)\(14\!\cdots\!32\)\( p^{16} T^{10} + \)\(52\!\cdots\!64\)\( p^{32} T^{12} - 11214933300710504 p^{48} T^{14} + p^{64} T^{16} \)
89 \( 1 + 2322516 T + 13958973359482918 T^{2} + \)\(32\!\cdots\!56\)\( T^{3} + \)\(11\!\cdots\!33\)\( T^{4} + \)\(13\!\cdots\!20\)\( T^{5} + \)\(67\!\cdots\!14\)\( T^{6} + \)\(46\!\cdots\!92\)\( T^{7} + \)\(30\!\cdots\!76\)\( T^{8} + \)\(46\!\cdots\!92\)\( p^{8} T^{9} + \)\(67\!\cdots\!14\)\( p^{16} T^{10} + \)\(13\!\cdots\!20\)\( p^{24} T^{11} + \)\(11\!\cdots\!33\)\( p^{32} T^{12} + \)\(32\!\cdots\!56\)\( p^{40} T^{13} + 13958973359482918 p^{48} T^{14} + 2322516 p^{56} T^{15} + p^{64} T^{16} \)
97 \( 1 - 32582515803200672 T^{2} + \)\(61\!\cdots\!96\)\( T^{4} - \)\(75\!\cdots\!32\)\( T^{6} + \)\(68\!\cdots\!18\)\( T^{8} - \)\(75\!\cdots\!32\)\( p^{16} T^{10} + \)\(61\!\cdots\!96\)\( p^{32} T^{12} - 32582515803200672 p^{48} T^{14} + p^{64} T^{16} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{16} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.01502500553811457196240400350, −9.860932040728076438242941966186, −9.007986940173629443759745171389, −8.983972764521192289896346944374, −8.492259709077910615879102951496, −8.389104704977813147315158388247, −8.219028512551366033306655073424, −7.81044747441236046957725910062, −7.78651959557278014319826916202, −6.89393598954348580549464949976, −6.77343369109864426273231715885, −6.64476219818561751459379403941, −6.58892601761707451401677533557, −5.80033052623248034873834521742, −5.71868867167670843441578623741, −5.53847424697892715859035240096, −4.54603788982598433809380590253, −4.28370613629734219039244962429, −4.20064513128064730989922244976, −3.36332384515845514557858091343, −2.74307320132641625332301878977, −2.19748764202604919572738127912, −2.12856305807243819977604489999, −0.67676561796902281742861602772, −0.42677902186565970797190865179, 0.42677902186565970797190865179, 0.67676561796902281742861602772, 2.12856305807243819977604489999, 2.19748764202604919572738127912, 2.74307320132641625332301878977, 3.36332384515845514557858091343, 4.20064513128064730989922244976, 4.28370613629734219039244962429, 4.54603788982598433809380590253, 5.53847424697892715859035240096, 5.71868867167670843441578623741, 5.80033052623248034873834521742, 6.58892601761707451401677533557, 6.64476219818561751459379403941, 6.77343369109864426273231715885, 6.89393598954348580549464949976, 7.78651959557278014319826916202, 7.81044747441236046957725910062, 8.219028512551366033306655073424, 8.389104704977813147315158388247, 8.492259709077910615879102951496, 8.983972764521192289896346944374, 9.007986940173629443759745171389, 9.860932040728076438242941966186, 10.01502500553811457196240400350

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.