Properties

Degree 2
Conductor 7
Sign $0.968 - 0.250i$
Motivic weight 3
Primitive yes
Self-dual no
Analytic rank 0

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (−1 + 1.73i)2-s + (−3.5 − 6.06i)3-s + (2.00 + 3.46i)4-s + (−3.5 + 6.06i)5-s + 14·6-s + (14 − 12.1i)7-s − 24·8-s + (−11 + 19.0i)9-s + (−7 − 12.1i)10-s + (2.5 + 4.33i)11-s + (13.9 − 24.2i)12-s − 14·13-s + (7 + 36.3i)14-s + 49·15-s + (8.00 − 13.8i)16-s + (10.5 + 18.1i)17-s + ⋯
L(s)  = 1  + (−0.353 + 0.612i)2-s + (−0.673 − 1.16i)3-s + (0.250 + 0.433i)4-s + (−0.313 + 0.542i)5-s + 0.952·6-s + (0.755 − 0.654i)7-s − 1.06·8-s + (−0.407 + 0.705i)9-s + (−0.221 − 0.383i)10-s + (0.0685 + 0.118i)11-s + (0.336 − 0.583i)12-s − 0.298·13-s + (0.133 + 0.694i)14-s + 0.843·15-s + (0.125 − 0.216i)16-s + (0.149 + 0.259i)17-s + ⋯

Functional equation

\[\begin{aligned} \Lambda(s)=\mathstrut & 7 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.968 - 0.250i)\, \overline{\Lambda}(4-s) \end{aligned} \]
\[\begin{aligned} \Lambda(s)=\mathstrut & 7 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.968 - 0.250i)\, \overline{\Lambda}(1-s) \end{aligned} \]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(7\)
\( \varepsilon \)  =  $0.968 - 0.250i$
motivic weight  =  \(3\)
character  :  $\chi_{7} (2, \cdot )$
primitive  :  yes
self-dual  :  no
analytic rank  =  0
Selberg data  =  $(2,\ 7,\ (\ :3/2),\ 0.968 - 0.250i)$
$L(2)$  $\approx$  $0.592926 + 0.0755587i$
$L(\frac12)$  $\approx$  $0.592926 + 0.0755587i$
$L(\frac{5}{2})$   not available
$L(1)$   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \] where, for $p \neq 7$, \(F_p\) is a polynomial of degree 2. If $p = 7$, then $F_p$ is a polynomial of degree at most 1.
$p$$F_p$
bad7 \( 1 + (-14 + 12.1i)T \)
good2 \( 1 + (1 - 1.73i)T + (-4 - 6.92i)T^{2} \)
3 \( 1 + (3.5 + 6.06i)T + (-13.5 + 23.3i)T^{2} \)
5 \( 1 + (3.5 - 6.06i)T + (-62.5 - 108. i)T^{2} \)
11 \( 1 + (-2.5 - 4.33i)T + (-665.5 + 1.15e3i)T^{2} \)
13 \( 1 + 14T + 2.19e3T^{2} \)
17 \( 1 + (-10.5 - 18.1i)T + (-2.45e3 + 4.25e3i)T^{2} \)
19 \( 1 + (24.5 - 42.4i)T + (-3.42e3 - 5.94e3i)T^{2} \)
23 \( 1 + (-79.5 + 137. i)T + (-6.08e3 - 1.05e4i)T^{2} \)
29 \( 1 - 58T + 2.43e4T^{2} \)
31 \( 1 + (73.5 + 127. i)T + (-1.48e4 + 2.57e4i)T^{2} \)
37 \( 1 + (109.5 - 189. i)T + (-2.53e4 - 4.38e4i)T^{2} \)
41 \( 1 - 350T + 6.89e4T^{2} \)
43 \( 1 + 124T + 7.95e4T^{2} \)
47 \( 1 + (262.5 - 454. i)T + (-5.19e4 - 8.99e4i)T^{2} \)
53 \( 1 + (151.5 + 262. i)T + (-7.44e4 + 1.28e5i)T^{2} \)
59 \( 1 + (-52.5 - 90.9i)T + (-1.02e5 + 1.77e5i)T^{2} \)
61 \( 1 + (-206.5 + 357. i)T + (-1.13e5 - 1.96e5i)T^{2} \)
67 \( 1 + (207.5 + 359. i)T + (-1.50e5 + 2.60e5i)T^{2} \)
71 \( 1 + 432T + 3.57e5T^{2} \)
73 \( 1 + (-556.5 - 963. i)T + (-1.94e5 + 3.36e5i)T^{2} \)
79 \( 1 + (-51.5 + 89.2i)T + (-2.46e5 - 4.26e5i)T^{2} \)
83 \( 1 - 1.09e3T + 5.71e5T^{2} \)
89 \( 1 + (-164.5 + 284. i)T + (-3.52e5 - 6.10e5i)T^{2} \)
97 \( 1 + 882T + 9.12e5T^{2} \)
show more
show less
\[\begin{aligned} L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1} \end{aligned}\]

Imaginary part of the first few zeros on the critical line

−22.75658303906369405879076936982, −20.83702434468867677778925371131, −18.87238470644861754687131275082, −17.71699999773205043957589791903, −16.77242482888655925605925920086, −14.75073122826914210166577738781, −12.63773290481159472105769105934, −11.23114614585979948876648558038, −7.86320333232698952994279195127, −6.69000228021965412375783704525, 5.20239540052751869909136213505, 9.170771798623879815197307093822, 10.79042177854964714767970907634, 11.91232141937324149059092308649, 14.95994334252734381646800591924, 16.09259512717138983717111855239, 17.75884298513280071891956407611, 19.50153937985057617696689143507, 20.91822196939805874340971609810, 21.73262490716289823117921584584

Graph of the $Z$-function along the critical line