Properties

Label 8-7e4-1.1-c17e4-0-0
Degree $8$
Conductor $2401$
Sign $1$
Analytic cond. $27058.4$
Root an. cond. $3.58127$
Motivic weight $17$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $4$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 186·2-s − 2.78e3·3-s − 2.52e5·4-s + 2.74e5·5-s − 5.18e5·6-s − 2.30e7·7-s − 5.44e7·8-s − 2.55e8·9-s + 5.10e7·10-s + 6.10e8·11-s + 7.04e8·12-s − 8.51e9·13-s − 4.28e9·14-s − 7.65e8·15-s + 1.96e10·16-s − 4.77e10·17-s − 4.75e10·18-s − 1.42e11·19-s − 6.95e10·20-s + 6.42e10·21-s + 1.13e11·22-s + 1.61e11·23-s + 1.51e11·24-s − 5.27e11·25-s − 1.58e12·26-s + 1.51e12·27-s + 5.83e12·28-s + ⋯
L(s)  = 1  + 0.513·2-s − 0.245·3-s − 1.93·4-s + 0.314·5-s − 0.125·6-s − 1.51·7-s − 1.14·8-s − 1.97·9-s + 0.161·10-s + 0.858·11-s + 0.473·12-s − 2.89·13-s − 0.776·14-s − 0.0771·15-s + 1.14·16-s − 1.66·17-s − 1.01·18-s − 1.92·19-s − 0.607·20-s + 0.370·21-s + 0.440·22-s + 0.429·23-s + 0.281·24-s − 0.691·25-s − 1.48·26-s + 1.03·27-s + 2.91·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2401 ^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr =\mathstrut & \, \Lambda(18-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2401 ^{s/2} \, \Gamma_{\C}(s+17/2)^{4} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2401\)    =    \(7^{4}\)
Sign: $1$
Analytic conductor: \(27058.4\)
Root analytic conductor: \(3.58127\)
Motivic weight: \(17\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(4\)
Selberg data: \((8,\ 2401,\ (\ :17/2, 17/2, 17/2, 17/2),\ 1)\)

Particular Values

\(L(9)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{19}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad7$C_1$ \( ( 1 + p^{8} T )^{4} \)
good2$C_2 \wr S_4$ \( 1 - 93 p T + 35949 p^{3} T^{2} - 180093 p^{8} T^{3} + 25177105 p^{11} T^{4} - 180093 p^{25} T^{5} + 35949 p^{37} T^{6} - 93 p^{52} T^{7} + p^{68} T^{8} \)
3$C_2 \wr S_4$ \( 1 + 2786 T + 9747656 p^{3} T^{2} - 306459314 p^{5} T^{3} + 48872111771182 p^{6} T^{4} - 306459314 p^{22} T^{5} + 9747656 p^{37} T^{6} + 2786 p^{51} T^{7} + p^{68} T^{8} \)
5$C_2 \wr S_4$ \( 1 - 274722 T + 602669145396 T^{2} + 2886269096223786 p^{3} T^{3} + \)\(63\!\cdots\!74\)\( p^{4} T^{4} + 2886269096223786 p^{20} T^{5} + 602669145396 p^{34} T^{6} - 274722 p^{51} T^{7} + p^{68} T^{8} \)
11$C_2 \wr S_4$ \( 1 - 610110180 T + 7005149347042788 p T^{2} - \)\(14\!\cdots\!48\)\( p^{2} T^{3} + \)\(23\!\cdots\!58\)\( p^{3} T^{4} - \)\(14\!\cdots\!48\)\( p^{19} T^{5} + 7005149347042788 p^{35} T^{6} - 610110180 p^{51} T^{7} + p^{68} T^{8} \)
13$C_2 \wr S_4$ \( 1 + 8514921674 T + 45947279477181818284 T^{2} + \)\(13\!\cdots\!18\)\( p T^{3} + \)\(35\!\cdots\!54\)\( p^{2} T^{4} + \)\(13\!\cdots\!18\)\( p^{18} T^{5} + 45947279477181818284 p^{34} T^{6} + 8514921674 p^{51} T^{7} + p^{68} T^{8} \)
17$C_2 \wr S_4$ \( 1 + 47762899716 T + \)\(27\!\cdots\!64\)\( T^{2} + \)\(10\!\cdots\!08\)\( T^{3} + \)\(33\!\cdots\!06\)\( T^{4} + \)\(10\!\cdots\!08\)\( p^{17} T^{5} + \)\(27\!\cdots\!64\)\( p^{34} T^{6} + 47762899716 p^{51} T^{7} + p^{68} T^{8} \)
19$C_2 \wr S_4$ \( 1 + 142813479494 T + \)\(20\!\cdots\!36\)\( T^{2} + \)\(18\!\cdots\!34\)\( T^{3} + \)\(17\!\cdots\!86\)\( T^{4} + \)\(18\!\cdots\!34\)\( p^{17} T^{5} + \)\(20\!\cdots\!36\)\( p^{34} T^{6} + 142813479494 p^{51} T^{7} + p^{68} T^{8} \)
23$C_2 \wr S_4$ \( 1 - 161322432240 T + \)\(35\!\cdots\!48\)\( T^{2} - \)\(91\!\cdots\!76\)\( T^{3} + \)\(60\!\cdots\!14\)\( T^{4} - \)\(91\!\cdots\!76\)\( p^{17} T^{5} + \)\(35\!\cdots\!48\)\( p^{34} T^{6} - 161322432240 p^{51} T^{7} + p^{68} T^{8} \)
29$C_2 \wr S_4$ \( 1 - 2470023989364 T + \)\(28\!\cdots\!56\)\( T^{2} - \)\(52\!\cdots\!64\)\( T^{3} + \)\(30\!\cdots\!86\)\( T^{4} - \)\(52\!\cdots\!64\)\( p^{17} T^{5} + \)\(28\!\cdots\!56\)\( p^{34} T^{6} - 2470023989364 p^{51} T^{7} + p^{68} T^{8} \)
31$C_2 \wr S_4$ \( 1 - 3069063677988 T + \)\(62\!\cdots\!56\)\( T^{2} - \)\(23\!\cdots\!44\)\( T^{3} + \)\(18\!\cdots\!90\)\( T^{4} - \)\(23\!\cdots\!44\)\( p^{17} T^{5} + \)\(62\!\cdots\!56\)\( p^{34} T^{6} - 3069063677988 p^{51} T^{7} + p^{68} T^{8} \)
37$C_2 \wr S_4$ \( 1 + 53477713304508 T + \)\(21\!\cdots\!40\)\( T^{2} + \)\(64\!\cdots\!56\)\( T^{3} + \)\(15\!\cdots\!78\)\( T^{4} + \)\(64\!\cdots\!56\)\( p^{17} T^{5} + \)\(21\!\cdots\!40\)\( p^{34} T^{6} + 53477713304508 p^{51} T^{7} + p^{68} T^{8} \)
41$C_2 \wr S_4$ \( 1 + 84856086719628 T + \)\(40\!\cdots\!44\)\( T^{2} - \)\(13\!\cdots\!28\)\( T^{3} - \)\(11\!\cdots\!90\)\( T^{4} - \)\(13\!\cdots\!28\)\( p^{17} T^{5} + \)\(40\!\cdots\!44\)\( p^{34} T^{6} + 84856086719628 p^{51} T^{7} + p^{68} T^{8} \)
43$C_2 \wr S_4$ \( 1 - 14664094189676 T + \)\(15\!\cdots\!20\)\( T^{2} - \)\(27\!\cdots\!52\)\( T^{3} + \)\(12\!\cdots\!42\)\( T^{4} - \)\(27\!\cdots\!52\)\( p^{17} T^{5} + \)\(15\!\cdots\!20\)\( p^{34} T^{6} - 14664094189676 p^{51} T^{7} + p^{68} T^{8} \)
47$C_2 \wr S_4$ \( 1 - 110590112906028 T + \)\(17\!\cdots\!64\)\( p T^{2} - \)\(77\!\cdots\!72\)\( T^{3} + \)\(29\!\cdots\!50\)\( T^{4} - \)\(77\!\cdots\!72\)\( p^{17} T^{5} + \)\(17\!\cdots\!64\)\( p^{35} T^{6} - 110590112906028 p^{51} T^{7} + p^{68} T^{8} \)
53$C_2 \wr S_4$ \( 1 + 517697020820328 T + \)\(41\!\cdots\!96\)\( T^{2} + \)\(22\!\cdots\!72\)\( T^{3} + \)\(94\!\cdots\!70\)\( T^{4} + \)\(22\!\cdots\!72\)\( p^{17} T^{5} + \)\(41\!\cdots\!96\)\( p^{34} T^{6} + 517697020820328 p^{51} T^{7} + p^{68} T^{8} \)
59$C_2 \wr S_4$ \( 1 + 2778221577040518 T + \)\(71\!\cdots\!92\)\( T^{2} + \)\(10\!\cdots\!66\)\( T^{3} + \)\(14\!\cdots\!74\)\( T^{4} + \)\(10\!\cdots\!66\)\( p^{17} T^{5} + \)\(71\!\cdots\!92\)\( p^{34} T^{6} + 2778221577040518 p^{51} T^{7} + p^{68} T^{8} \)
61$C_2 \wr S_4$ \( 1 + 3329268765288494 T + \)\(87\!\cdots\!96\)\( T^{2} + \)\(17\!\cdots\!66\)\( T^{3} + \)\(30\!\cdots\!46\)\( T^{4} + \)\(17\!\cdots\!66\)\( p^{17} T^{5} + \)\(87\!\cdots\!96\)\( p^{34} T^{6} + 3329268765288494 p^{51} T^{7} + p^{68} T^{8} \)
67$C_2 \wr S_4$ \( 1 + 1542501737022560 T + \)\(33\!\cdots\!56\)\( T^{2} + \)\(24\!\cdots\!92\)\( T^{3} + \)\(48\!\cdots\!94\)\( T^{4} + \)\(24\!\cdots\!92\)\( p^{17} T^{5} + \)\(33\!\cdots\!56\)\( p^{34} T^{6} + 1542501737022560 p^{51} T^{7} + p^{68} T^{8} \)
71$C_2 \wr S_4$ \( 1 - 739192660163448 T + \)\(69\!\cdots\!80\)\( T^{2} + \)\(11\!\cdots\!08\)\( T^{3} + \)\(22\!\cdots\!58\)\( T^{4} + \)\(11\!\cdots\!08\)\( p^{17} T^{5} + \)\(69\!\cdots\!80\)\( p^{34} T^{6} - 739192660163448 p^{51} T^{7} + p^{68} T^{8} \)
73$C_2 \wr S_4$ \( 1 + 1768956758306304 T + \)\(15\!\cdots\!96\)\( T^{2} + \)\(34\!\cdots\!28\)\( T^{3} + \)\(98\!\cdots\!82\)\( T^{4} + \)\(34\!\cdots\!28\)\( p^{17} T^{5} + \)\(15\!\cdots\!96\)\( p^{34} T^{6} + 1768956758306304 p^{51} T^{7} + p^{68} T^{8} \)
79$C_2 \wr S_4$ \( 1 - 1824334397417480 T + \)\(42\!\cdots\!76\)\( T^{2} - \)\(11\!\cdots\!24\)\( T^{3} + \)\(10\!\cdots\!66\)\( T^{4} - \)\(11\!\cdots\!24\)\( p^{17} T^{5} + \)\(42\!\cdots\!76\)\( p^{34} T^{6} - 1824334397417480 p^{51} T^{7} + p^{68} T^{8} \)
83$C_2 \wr S_4$ \( 1 + 49183281603250158 T + \)\(21\!\cdots\!68\)\( T^{2} + \)\(54\!\cdots\!54\)\( T^{3} + \)\(13\!\cdots\!78\)\( T^{4} + \)\(54\!\cdots\!54\)\( p^{17} T^{5} + \)\(21\!\cdots\!68\)\( p^{34} T^{6} + 49183281603250158 p^{51} T^{7} + p^{68} T^{8} \)
89$C_2 \wr S_4$ \( 1 + 138655399526807016 T + \)\(12\!\cdots\!76\)\( T^{2} + \)\(69\!\cdots\!16\)\( T^{3} + \)\(30\!\cdots\!86\)\( T^{4} + \)\(69\!\cdots\!16\)\( p^{17} T^{5} + \)\(12\!\cdots\!76\)\( p^{34} T^{6} + 138655399526807016 p^{51} T^{7} + p^{68} T^{8} \)
97$C_2 \wr S_4$ \( 1 - 73446338844858924 T + \)\(14\!\cdots\!12\)\( T^{2} - \)\(83\!\cdots\!08\)\( T^{3} + \)\(10\!\cdots\!98\)\( T^{4} - \)\(83\!\cdots\!08\)\( p^{17} T^{5} + \)\(14\!\cdots\!12\)\( p^{34} T^{6} - 73446338844858924 p^{51} T^{7} + p^{68} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.70413305399304772956301430618, −12.94660789391145369319820301117, −12.85646130593098064869293145469, −12.30171392840691537539756118513, −12.09112476852973258962726564494, −11.57683756330827822323843399193, −10.89531739156281558371572629807, −10.23497381352073843148526902452, −10.07041320197733143846964726099, −9.389885379481557048368265100928, −9.002782088425977706109409639626, −8.781824027192336686321572558517, −8.609617000321132520792982421120, −7.63888514420479483316762093094, −6.81346863017482316365978394549, −6.50765577649262657274166895687, −6.14295130813690473265562724757, −5.25566293256639367013452505876, −5.04016220444712589454411778047, −4.34561744255245332913797919953, −4.32222620163732425833173500340, −3.32260993172969543325913931935, −2.75452067148864792035006208988, −2.48611652886379038073505392355, −1.59257517371165018500067054973, 0, 0, 0, 0, 1.59257517371165018500067054973, 2.48611652886379038073505392355, 2.75452067148864792035006208988, 3.32260993172969543325913931935, 4.32222620163732425833173500340, 4.34561744255245332913797919953, 5.04016220444712589454411778047, 5.25566293256639367013452505876, 6.14295130813690473265562724757, 6.50765577649262657274166895687, 6.81346863017482316365978394549, 7.63888514420479483316762093094, 8.609617000321132520792982421120, 8.781824027192336686321572558517, 9.002782088425977706109409639626, 9.389885379481557048368265100928, 10.07041320197733143846964726099, 10.23497381352073843148526902452, 10.89531739156281558371572629807, 11.57683756330827822323843399193, 12.09112476852973258962726564494, 12.30171392840691537539756118513, 12.85646130593098064869293145469, 12.94660789391145369319820301117, 13.70413305399304772956301430618

Graph of the $Z$-function along the critical line