Properties

Label 2-7-7.4-c13-0-7
Degree $2$
Conductor $7$
Sign $-0.588 - 0.808i$
Analytic cond. $7.50616$
Root an. cond. $2.73973$
Motivic weight $13$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−48.0 − 83.2i)2-s + (45.1 − 78.1i)3-s + (−519. + 899. i)4-s + (−2.83e4 − 4.90e4i)5-s − 8.66e3·6-s + (5.21e4 + 3.06e5i)7-s − 6.87e5·8-s + (7.93e5 + 1.37e6i)9-s + (−2.72e6 + 4.71e6i)10-s + (4.96e4 − 8.59e4i)11-s + (4.68e4 + 8.11e4i)12-s − 2.66e7·13-s + (2.30e7 − 1.90e7i)14-s − 5.11e6·15-s + (3.72e7 + 6.45e7i)16-s + (2.70e7 − 4.67e7i)17-s + ⋯
L(s)  = 1  + (−0.530 − 0.919i)2-s + (0.0357 − 0.0618i)3-s + (−0.0633 + 0.109i)4-s + (−0.810 − 1.40i)5-s − 0.0758·6-s + (0.167 + 0.985i)7-s − 0.926·8-s + (0.497 + 0.861i)9-s + (−0.860 + 1.49i)10-s + (0.00844 − 0.0146i)11-s + (0.00452 + 0.00784i)12-s − 1.53·13-s + (0.817 − 0.677i)14-s − 0.115·15-s + (0.555 + 0.961i)16-s + (0.271 − 0.469i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.588 - 0.808i)\, \overline{\Lambda}(14-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7 ^{s/2} \, \Gamma_{\C}(s+13/2) \, L(s)\cr =\mathstrut & (-0.588 - 0.808i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7\)
Sign: $-0.588 - 0.808i$
Analytic conductor: \(7.50616\)
Root analytic conductor: \(2.73973\)
Motivic weight: \(13\)
Rational: no
Arithmetic: yes
Character: $\chi_{7} (4, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 7,\ (\ :13/2),\ -0.588 - 0.808i)\)

Particular Values

\(L(7)\) \(\approx\) \(0.170618 + 0.334993i\)
\(L(\frac12)\) \(\approx\) \(0.170618 + 0.334993i\)
\(L(\frac{15}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 + (-5.21e4 - 3.06e5i)T \)
good2 \( 1 + (48.0 + 83.2i)T + (-4.09e3 + 7.09e3i)T^{2} \)
3 \( 1 + (-45.1 + 78.1i)T + (-7.97e5 - 1.38e6i)T^{2} \)
5 \( 1 + (2.83e4 + 4.90e4i)T + (-6.10e8 + 1.05e9i)T^{2} \)
11 \( 1 + (-4.96e4 + 8.59e4i)T + (-1.72e13 - 2.98e13i)T^{2} \)
13 \( 1 + 2.66e7T + 3.02e14T^{2} \)
17 \( 1 + (-2.70e7 + 4.67e7i)T + (-4.95e15 - 8.57e15i)T^{2} \)
19 \( 1 + (1.99e7 + 3.45e7i)T + (-2.10e16 + 3.64e16i)T^{2} \)
23 \( 1 + (4.74e8 + 8.21e8i)T + (-2.52e17 + 4.36e17i)T^{2} \)
29 \( 1 + 3.09e9T + 1.02e19T^{2} \)
31 \( 1 + (-3.51e9 + 6.08e9i)T + (-1.22e19 - 2.11e19i)T^{2} \)
37 \( 1 + (-1.38e9 - 2.39e9i)T + (-1.21e20 + 2.10e20i)T^{2} \)
41 \( 1 + 1.80e10T + 9.25e20T^{2} \)
43 \( 1 + 6.16e10T + 1.71e21T^{2} \)
47 \( 1 + (-6.21e9 - 1.07e10i)T + (-2.73e21 + 4.72e21i)T^{2} \)
53 \( 1 + (-6.25e10 + 1.08e11i)T + (-1.30e22 - 2.25e22i)T^{2} \)
59 \( 1 + (-6.18e10 + 1.07e11i)T + (-5.24e22 - 9.09e22i)T^{2} \)
61 \( 1 + (2.02e11 + 3.51e11i)T + (-8.09e22 + 1.40e23i)T^{2} \)
67 \( 1 + (2.08e11 - 3.61e11i)T + (-2.74e23 - 4.74e23i)T^{2} \)
71 \( 1 - 1.38e12T + 1.16e24T^{2} \)
73 \( 1 + (-8.27e11 + 1.43e12i)T + (-8.35e23 - 1.44e24i)T^{2} \)
79 \( 1 + (-3.19e11 - 5.52e11i)T + (-2.33e24 + 4.04e24i)T^{2} \)
83 \( 1 + 1.40e12T + 8.87e24T^{2} \)
89 \( 1 + (-1.94e12 - 3.36e12i)T + (-1.09e25 + 1.90e25i)T^{2} \)
97 \( 1 - 2.13e12T + 6.73e25T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−18.63653548502407251506132573862, −16.67745759317851852665234933744, −15.22280229271340168566797663432, −12.61201352205132463226866618212, −11.70769934747526130048868224255, −9.677640399007670355415467882009, −8.197415363712204464265067405739, −4.94538298644586638691496092966, −2.11327427001491387277366213171, −0.22459624757249313285022489012, 3.51208530566698915471609198408, 6.82830998858619157066304446564, 7.64468660293593088521301482910, 10.05238018538452528239665326946, 11.91876699918261207619134575764, 14.56068592292408680411293140924, 15.42808295853910794385705365910, 17.08244937136597327220503929032, 18.26705252222950242638618905481, 19.72304763574661967459070200148

Graph of the $Z$-function along the critical line