Properties

Label 2-7-7.4-c11-0-3
Degree $2$
Conductor $7$
Sign $-0.754 + 0.656i$
Analytic cond. $5.37840$
Root an. cond. $2.31913$
Motivic weight $11$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (2.85 + 4.94i)2-s + (−366. + 634. i)3-s + (1.00e3 − 1.74e3i)4-s + (−4.49e3 − 7.77e3i)5-s − 4.18e3·6-s + (−4.30e4 + 1.12e4i)7-s + 2.31e4·8-s + (−1.79e5 − 3.11e5i)9-s + (2.56e4 − 4.44e4i)10-s + (−4.56e4 + 7.91e4i)11-s + (7.37e5 + 1.27e6i)12-s − 7.75e5·13-s + (−1.78e5 − 1.80e5i)14-s + 6.57e6·15-s + (−1.99e6 − 3.45e6i)16-s + (−4.63e6 + 8.03e6i)17-s + ⋯
L(s)  = 1  + (0.0630 + 0.109i)2-s + (−0.869 + 1.50i)3-s + (0.492 − 0.852i)4-s + (−0.642 − 1.11i)5-s − 0.219·6-s + (−0.967 + 0.253i)7-s + 0.250·8-s + (−1.01 − 1.75i)9-s + (0.0810 − 0.140i)10-s + (−0.0855 + 0.148i)11-s + (0.856 + 1.48i)12-s − 0.579·13-s + (−0.0887 − 0.0896i)14-s + 2.23·15-s + (−0.476 − 0.824i)16-s + (−0.792 + 1.37i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.754 + 0.656i)\, \overline{\Lambda}(12-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7 ^{s/2} \, \Gamma_{\C}(s+11/2) \, L(s)\cr =\mathstrut & (-0.754 + 0.656i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7\)
Sign: $-0.754 + 0.656i$
Analytic conductor: \(5.37840\)
Root analytic conductor: \(2.31913\)
Motivic weight: \(11\)
Rational: no
Arithmetic: yes
Character: $\chi_{7} (4, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 7,\ (\ :11/2),\ -0.754 + 0.656i)\)

Particular Values

\(L(6)\) \(\approx\) \(0.0487260 - 0.130130i\)
\(L(\frac12)\) \(\approx\) \(0.0487260 - 0.130130i\)
\(L(\frac{13}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 + (4.30e4 - 1.12e4i)T \)
good2 \( 1 + (-2.85 - 4.94i)T + (-1.02e3 + 1.77e3i)T^{2} \)
3 \( 1 + (366. - 634. i)T + (-8.85e4 - 1.53e5i)T^{2} \)
5 \( 1 + (4.49e3 + 7.77e3i)T + (-2.44e7 + 4.22e7i)T^{2} \)
11 \( 1 + (4.56e4 - 7.91e4i)T + (-1.42e11 - 2.47e11i)T^{2} \)
13 \( 1 + 7.75e5T + 1.79e12T^{2} \)
17 \( 1 + (4.63e6 - 8.03e6i)T + (-1.71e13 - 2.96e13i)T^{2} \)
19 \( 1 + (-1.43e6 - 2.48e6i)T + (-5.82e13 + 1.00e14i)T^{2} \)
23 \( 1 + (5.26e6 + 9.12e6i)T + (-4.76e14 + 8.25e14i)T^{2} \)
29 \( 1 + 4.24e7T + 1.22e16T^{2} \)
31 \( 1 + (-5.29e7 + 9.16e7i)T + (-1.27e16 - 2.20e16i)T^{2} \)
37 \( 1 + (1.54e8 + 2.68e8i)T + (-8.89e16 + 1.54e17i)T^{2} \)
41 \( 1 + 1.19e8T + 5.50e17T^{2} \)
43 \( 1 - 1.16e9T + 9.29e17T^{2} \)
47 \( 1 + (-1.25e8 - 2.16e8i)T + (-1.23e18 + 2.14e18i)T^{2} \)
53 \( 1 + (1.73e9 - 3.00e9i)T + (-4.63e18 - 8.02e18i)T^{2} \)
59 \( 1 + (3.01e9 - 5.22e9i)T + (-1.50e19 - 2.61e19i)T^{2} \)
61 \( 1 + (5.31e9 + 9.21e9i)T + (-2.17e19 + 3.76e19i)T^{2} \)
67 \( 1 + (1.10e9 - 1.91e9i)T + (-6.10e19 - 1.05e20i)T^{2} \)
71 \( 1 + 1.34e10T + 2.31e20T^{2} \)
73 \( 1 + (-8.02e9 + 1.38e10i)T + (-1.56e20 - 2.71e20i)T^{2} \)
79 \( 1 + (8.41e9 + 1.45e10i)T + (-3.73e20 + 6.47e20i)T^{2} \)
83 \( 1 + 1.25e10T + 1.28e21T^{2} \)
89 \( 1 + (-3.02e10 - 5.23e10i)T + (-1.38e21 + 2.40e21i)T^{2} \)
97 \( 1 + 1.39e11T + 7.15e21T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−19.51764309041193800488070345804, −16.93149809068399174266704570756, −15.96054883049609375098211601348, −15.18335947428569046092628743032, −12.28667337512325470899101928523, −10.67440489914489058892614703211, −9.341153434044794574582844018643, −5.90300302620653240857006996460, −4.39223036092373458183256995366, −0.085473558361817323349221169540, 2.78676592299824409132422704096, 6.71542105758421729121066238703, 7.41231965281054532513636615392, 11.12595471639540128244153248417, 12.15706636633424500420268475843, 13.49291136794178079755422149239, 15.99201363410612209447787117383, 17.46383531083045124380705695107, 18.72199073788921829830687765013, 19.81870455446407048321117954170

Graph of the $Z$-function along the critical line