Properties

Label 2-7-7.2-c11-0-1
Degree $2$
Conductor $7$
Sign $-0.973 - 0.230i$
Analytic cond. $5.37840$
Root an. cond. $2.31913$
Motivic weight $11$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−21.0 + 36.3i)2-s + (205. + 355. i)3-s + (141. + 245. i)4-s + (−41.2 + 71.4i)5-s − 1.72e4·6-s + (−4.33e4 + 1.00e4i)7-s − 9.79e4·8-s + (4.34e3 − 7.53e3i)9-s + (−1.73e3 − 3.00e3i)10-s + (1.60e5 + 2.78e5i)11-s + (−5.81e4 + 1.00e5i)12-s + 8.11e5·13-s + (5.44e5 − 1.78e6i)14-s − 3.38e4·15-s + (1.76e6 − 3.05e6i)16-s + (2.13e6 + 3.69e6i)17-s + ⋯
L(s)  = 1  + (−0.464 + 0.803i)2-s + (0.487 + 0.844i)3-s + (0.0692 + 0.119i)4-s + (−0.00590 + 0.0102i)5-s − 0.905·6-s + (−0.974 + 0.225i)7-s − 1.05·8-s + (0.0245 − 0.0425i)9-s + (−0.00548 − 0.00949i)10-s + (0.300 + 0.521i)11-s + (−0.0675 + 0.116i)12-s + 0.606·13-s + (0.270 − 0.887i)14-s − 0.0115·15-s + (0.421 − 0.729i)16-s + (0.364 + 0.630i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.973 - 0.230i)\, \overline{\Lambda}(12-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7 ^{s/2} \, \Gamma_{\C}(s+11/2) \, L(s)\cr =\mathstrut & (-0.973 - 0.230i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7\)
Sign: $-0.973 - 0.230i$
Analytic conductor: \(5.37840\)
Root analytic conductor: \(2.31913\)
Motivic weight: \(11\)
Rational: no
Arithmetic: yes
Character: $\chi_{7} (2, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 7,\ (\ :11/2),\ -0.973 - 0.230i)\)

Particular Values

\(L(6)\) \(\approx\) \(0.142102 + 1.21645i\)
\(L(\frac12)\) \(\approx\) \(0.142102 + 1.21645i\)
\(L(\frac{13}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 + (4.33e4 - 1.00e4i)T \)
good2 \( 1 + (21.0 - 36.3i)T + (-1.02e3 - 1.77e3i)T^{2} \)
3 \( 1 + (-205. - 355. i)T + (-8.85e4 + 1.53e5i)T^{2} \)
5 \( 1 + (41.2 - 71.4i)T + (-2.44e7 - 4.22e7i)T^{2} \)
11 \( 1 + (-1.60e5 - 2.78e5i)T + (-1.42e11 + 2.47e11i)T^{2} \)
13 \( 1 - 8.11e5T + 1.79e12T^{2} \)
17 \( 1 + (-2.13e6 - 3.69e6i)T + (-1.71e13 + 2.96e13i)T^{2} \)
19 \( 1 + (7.49e6 - 1.29e7i)T + (-5.82e13 - 1.00e14i)T^{2} \)
23 \( 1 + (-3.29e6 + 5.70e6i)T + (-4.76e14 - 8.25e14i)T^{2} \)
29 \( 1 - 1.83e8T + 1.22e16T^{2} \)
31 \( 1 + (7.42e7 + 1.28e8i)T + (-1.27e16 + 2.20e16i)T^{2} \)
37 \( 1 + (2.93e8 - 5.07e8i)T + (-8.89e16 - 1.54e17i)T^{2} \)
41 \( 1 - 7.84e8T + 5.50e17T^{2} \)
43 \( 1 + 1.21e9T + 9.29e17T^{2} \)
47 \( 1 + (-7.11e8 + 1.23e9i)T + (-1.23e18 - 2.14e18i)T^{2} \)
53 \( 1 + (1.68e8 + 2.92e8i)T + (-4.63e18 + 8.02e18i)T^{2} \)
59 \( 1 + (5.07e9 + 8.79e9i)T + (-1.50e19 + 2.61e19i)T^{2} \)
61 \( 1 + (-1.96e9 + 3.39e9i)T + (-2.17e19 - 3.76e19i)T^{2} \)
67 \( 1 + (-8.62e9 - 1.49e10i)T + (-6.10e19 + 1.05e20i)T^{2} \)
71 \( 1 - 1.18e10T + 2.31e20T^{2} \)
73 \( 1 + (7.04e9 + 1.21e10i)T + (-1.56e20 + 2.71e20i)T^{2} \)
79 \( 1 + (3.25e9 - 5.63e9i)T + (-3.73e20 - 6.47e20i)T^{2} \)
83 \( 1 + 1.57e9T + 1.28e21T^{2} \)
89 \( 1 + (-4.14e10 + 7.18e10i)T + (-1.38e21 - 2.40e21i)T^{2} \)
97 \( 1 + 6.77e10T + 7.15e21T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−20.49883238545711762459193329628, −18.72873307932535808179933733448, −16.97196311697675525620343331084, −15.83166779251143283489379785608, −14.83246682010766401994312581709, −12.47816204088464352344983144395, −9.924572105384588291393034344621, −8.562515899265089739146815352991, −6.46914314793930104137336612401, −3.50160656694902905199538595954, 0.847289427902800774780190116561, 2.77784466053276236280323956056, 6.64028393766974782408402709029, 8.894792706372553045282475351505, 10.64832756738846788769837142874, 12.46257824905821630059921542734, 13.90118362140175887683279150517, 15.98788050306776545044346110827, 18.12423200460619562097144573849, 19.29737863219414639289287090753

Graph of the $Z$-function along the critical line