Properties

Label 2-690-115.54-c1-0-13
Degree $2$
Conductor $690$
Sign $0.760 + 0.649i$
Analytic cond. $5.50967$
Root an. cond. $2.34727$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.989 + 0.142i)2-s + (−0.909 + 0.415i)3-s + (0.959 + 0.281i)4-s + (−2.14 + 0.635i)5-s + (−0.959 + 0.281i)6-s + (2.47 − 3.84i)7-s + (0.909 + 0.415i)8-s + (0.654 − 0.755i)9-s + (−2.21 + 0.324i)10-s + (−0.00211 − 0.0146i)11-s + (−0.989 + 0.142i)12-s + (−1.93 − 3.00i)13-s + (2.99 − 3.45i)14-s + (1.68 − 1.46i)15-s + (0.841 + 0.540i)16-s + (−0.817 − 2.78i)17-s + ⋯
L(s)  = 1  + (0.699 + 0.100i)2-s + (−0.525 + 0.239i)3-s + (0.479 + 0.140i)4-s + (−0.958 + 0.284i)5-s + (−0.391 + 0.115i)6-s + (0.935 − 1.45i)7-s + (0.321 + 0.146i)8-s + (0.218 − 0.251i)9-s + (−0.699 + 0.102i)10-s + (−0.000636 − 0.00442i)11-s + (−0.285 + 0.0410i)12-s + (−0.535 − 0.833i)13-s + (0.800 − 0.924i)14-s + (0.435 − 0.379i)15-s + (0.210 + 0.135i)16-s + (−0.198 − 0.675i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 690 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.760 + 0.649i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 690 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.760 + 0.649i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(690\)    =    \(2 \cdot 3 \cdot 5 \cdot 23\)
Sign: $0.760 + 0.649i$
Analytic conductor: \(5.50967\)
Root analytic conductor: \(2.34727\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{690} (169, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 690,\ (\ :1/2),\ 0.760 + 0.649i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.62105 - 0.598434i\)
\(L(\frac12)\) \(\approx\) \(1.62105 - 0.598434i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.989 - 0.142i)T \)
3 \( 1 + (0.909 - 0.415i)T \)
5 \( 1 + (2.14 - 0.635i)T \)
23 \( 1 + (4.29 + 2.13i)T \)
good7 \( 1 + (-2.47 + 3.84i)T + (-2.90 - 6.36i)T^{2} \)
11 \( 1 + (0.00211 + 0.0146i)T + (-10.5 + 3.09i)T^{2} \)
13 \( 1 + (1.93 + 3.00i)T + (-5.40 + 11.8i)T^{2} \)
17 \( 1 + (0.817 + 2.78i)T + (-14.3 + 9.19i)T^{2} \)
19 \( 1 + (-7.13 - 2.09i)T + (15.9 + 10.2i)T^{2} \)
29 \( 1 + (-6.47 + 1.90i)T + (24.3 - 15.6i)T^{2} \)
31 \( 1 + (-1.24 + 2.73i)T + (-20.3 - 23.4i)T^{2} \)
37 \( 1 + (-2.52 - 2.18i)T + (5.26 + 36.6i)T^{2} \)
41 \( 1 + (2.38 + 2.74i)T + (-5.83 + 40.5i)T^{2} \)
43 \( 1 + (-6.63 + 3.03i)T + (28.1 - 32.4i)T^{2} \)
47 \( 1 - 0.920iT - 47T^{2} \)
53 \( 1 + (4.07 - 6.33i)T + (-22.0 - 48.2i)T^{2} \)
59 \( 1 + (-7.23 + 4.65i)T + (24.5 - 53.6i)T^{2} \)
61 \( 1 + (2.74 - 6.00i)T + (-39.9 - 46.1i)T^{2} \)
67 \( 1 + (5.29 + 0.761i)T + (64.2 + 18.8i)T^{2} \)
71 \( 1 + (1.86 - 12.9i)T + (-68.1 - 20.0i)T^{2} \)
73 \( 1 + (-1.35 + 4.60i)T + (-61.4 - 39.4i)T^{2} \)
79 \( 1 + (13.4 - 8.61i)T + (32.8 - 71.8i)T^{2} \)
83 \( 1 + (10.6 + 9.20i)T + (11.8 + 82.1i)T^{2} \)
89 \( 1 + (3.94 + 8.63i)T + (-58.2 + 67.2i)T^{2} \)
97 \( 1 + (4.85 - 4.20i)T + (13.8 - 96.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.48849324572319055420189023229, −9.972835269966413493065998496475, −8.226408955419070021579877357696, −7.53718919609539071171856054145, −7.02270344507673500936700273800, −5.68881706160744532142463784842, −4.65505966623463233008130563172, −4.12340027355854188820349222862, −2.97195754575384451098378997849, −0.855558543519269342941637418599, 1.58511846444080476721413516991, 2.90484662957998336993838503831, 4.36202142109607618028921127398, 5.04398611909060675256129360696, 5.85441801735119326793970152020, 6.98798662244296271192248292223, 7.892169868583885201105378259969, 8.687244836320934015560988621031, 9.735962341304586060623986855189, 11.09907946748460835799624198256

Graph of the $Z$-function along the critical line