Properties

Label 2-690-69.53-c1-0-11
Degree $2$
Conductor $690$
Sign $0.948 + 0.316i$
Analytic cond. $5.50967$
Root an. cond. $2.34727$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.755 − 0.654i)2-s + (0.359 − 1.69i)3-s + (0.142 + 0.989i)4-s + (0.415 + 0.909i)5-s + (−1.38 + 1.04i)6-s + (0.816 + 2.78i)7-s + (0.540 − 0.841i)8-s + (−2.74 − 1.21i)9-s + (0.281 − 0.959i)10-s + (0.260 + 0.301i)11-s + (1.72 + 0.114i)12-s + (2.27 + 0.668i)13-s + (1.20 − 2.63i)14-s + (1.69 − 0.376i)15-s + (−0.959 + 0.281i)16-s + (−0.489 + 3.40i)17-s + ⋯
L(s)  = 1  + (−0.534 − 0.463i)2-s + (0.207 − 0.978i)3-s + (0.0711 + 0.494i)4-s + (0.185 + 0.406i)5-s + (−0.563 + 0.426i)6-s + (0.308 + 1.05i)7-s + (0.191 − 0.297i)8-s + (−0.913 − 0.405i)9-s + (0.0890 − 0.303i)10-s + (0.0786 + 0.0908i)11-s + (0.498 + 0.0330i)12-s + (0.631 + 0.185i)13-s + (0.321 − 0.704i)14-s + (0.436 − 0.0973i)15-s + (−0.239 + 0.0704i)16-s + (−0.118 + 0.826i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 690 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.948 + 0.316i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 690 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.948 + 0.316i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(690\)    =    \(2 \cdot 3 \cdot 5 \cdot 23\)
Sign: $0.948 + 0.316i$
Analytic conductor: \(5.50967\)
Root analytic conductor: \(2.34727\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{690} (191, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 690,\ (\ :1/2),\ 0.948 + 0.316i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.28564 - 0.209038i\)
\(L(\frac12)\) \(\approx\) \(1.28564 - 0.209038i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.755 + 0.654i)T \)
3 \( 1 + (-0.359 + 1.69i)T \)
5 \( 1 + (-0.415 - 0.909i)T \)
23 \( 1 + (-4.78 + 0.260i)T \)
good7 \( 1 + (-0.816 - 2.78i)T + (-5.88 + 3.78i)T^{2} \)
11 \( 1 + (-0.260 - 0.301i)T + (-1.56 + 10.8i)T^{2} \)
13 \( 1 + (-2.27 - 0.668i)T + (10.9 + 7.02i)T^{2} \)
17 \( 1 + (0.489 - 3.40i)T + (-16.3 - 4.78i)T^{2} \)
19 \( 1 + (0.0720 - 0.0103i)T + (18.2 - 5.35i)T^{2} \)
29 \( 1 + (-8.24 - 1.18i)T + (27.8 + 8.17i)T^{2} \)
31 \( 1 + (-7.97 - 5.12i)T + (12.8 + 28.1i)T^{2} \)
37 \( 1 + (0.619 + 0.282i)T + (24.2 + 27.9i)T^{2} \)
41 \( 1 + (3.91 - 1.78i)T + (26.8 - 30.9i)T^{2} \)
43 \( 1 + (2.36 + 3.68i)T + (-17.8 + 39.1i)T^{2} \)
47 \( 1 + 1.09iT - 47T^{2} \)
53 \( 1 + (7.85 - 2.30i)T + (44.5 - 28.6i)T^{2} \)
59 \( 1 + (-2.89 + 9.85i)T + (-49.6 - 31.8i)T^{2} \)
61 \( 1 + (-5.38 + 8.37i)T + (-25.3 - 55.4i)T^{2} \)
67 \( 1 + (6.25 + 5.41i)T + (9.53 + 66.3i)T^{2} \)
71 \( 1 + (-10.8 - 9.44i)T + (10.1 + 70.2i)T^{2} \)
73 \( 1 + (1.74 + 12.1i)T + (-70.0 + 20.5i)T^{2} \)
79 \( 1 + (0.274 - 0.935i)T + (-66.4 - 42.7i)T^{2} \)
83 \( 1 + (7.05 - 15.4i)T + (-54.3 - 62.7i)T^{2} \)
89 \( 1 + (-1.35 + 0.870i)T + (36.9 - 80.9i)T^{2} \)
97 \( 1 + (1.94 - 0.890i)T + (63.5 - 73.3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.53315397982171059126264257045, −9.423688356255876299549056879444, −8.469749377608377682275224828099, −8.234937741996511644413670763002, −6.82038009197476158634431838733, −6.32632550339427878030001639478, −5.05541532857787404681296307641, −3.35319192896117161277259060210, −2.42714916192557037847989444671, −1.35758396948410355294822242045, 0.942152192059766477002304617998, 2.88523002878192576207151180334, 4.26432267799913803649550462127, 4.92705938285929511516895424289, 6.04946795879957389200354495132, 7.11178525429341096931216106513, 8.165969177052868627825668363519, 8.732748545550227608037591566045, 9.712465406111747527174229082368, 10.27615548826924328312029244449

Graph of the $Z$-function along the critical line