Properties

Label 2-690-69.53-c1-0-25
Degree $2$
Conductor $690$
Sign $-0.900 - 0.435i$
Analytic cond. $5.50967$
Root an. cond. $2.34727$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.755 − 0.654i)2-s + (−1.23 − 1.21i)3-s + (0.142 + 0.989i)4-s + (0.415 + 0.909i)5-s + (0.135 + 1.72i)6-s + (0.0399 + 0.136i)7-s + (0.540 − 0.841i)8-s + (0.0409 + 2.99i)9-s + (0.281 − 0.959i)10-s + (−2.41 − 2.79i)11-s + (1.02 − 1.39i)12-s + (2.41 + 0.707i)13-s + (0.0589 − 0.128i)14-s + (0.594 − 1.62i)15-s + (−0.959 + 0.281i)16-s + (0.338 − 2.35i)17-s + ⋯
L(s)  = 1  + (−0.534 − 0.463i)2-s + (−0.711 − 0.702i)3-s + (0.0711 + 0.494i)4-s + (0.185 + 0.406i)5-s + (0.0552 + 0.704i)6-s + (0.0150 + 0.0514i)7-s + (0.191 − 0.297i)8-s + (0.0136 + 0.999i)9-s + (0.0890 − 0.303i)10-s + (−0.729 − 0.841i)11-s + (0.296 − 0.402i)12-s + (0.668 + 0.196i)13-s + (0.0157 − 0.0344i)14-s + (0.153 − 0.420i)15-s + (−0.239 + 0.0704i)16-s + (0.0820 − 0.570i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 690 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.900 - 0.435i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 690 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.900 - 0.435i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(690\)    =    \(2 \cdot 3 \cdot 5 \cdot 23\)
Sign: $-0.900 - 0.435i$
Analytic conductor: \(5.50967\)
Root analytic conductor: \(2.34727\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{690} (191, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 690,\ (\ :1/2),\ -0.900 - 0.435i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.0436081 + 0.190166i\)
\(L(\frac12)\) \(\approx\) \(0.0436081 + 0.190166i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.755 + 0.654i)T \)
3 \( 1 + (1.23 + 1.21i)T \)
5 \( 1 + (-0.415 - 0.909i)T \)
23 \( 1 + (2.28 + 4.21i)T \)
good7 \( 1 + (-0.0399 - 0.136i)T + (-5.88 + 3.78i)T^{2} \)
11 \( 1 + (2.41 + 2.79i)T + (-1.56 + 10.8i)T^{2} \)
13 \( 1 + (-2.41 - 0.707i)T + (10.9 + 7.02i)T^{2} \)
17 \( 1 + (-0.338 + 2.35i)T + (-16.3 - 4.78i)T^{2} \)
19 \( 1 + (6.49 - 0.933i)T + (18.2 - 5.35i)T^{2} \)
29 \( 1 + (3.82 + 0.550i)T + (27.8 + 8.17i)T^{2} \)
31 \( 1 + (4.87 + 3.13i)T + (12.8 + 28.1i)T^{2} \)
37 \( 1 + (-0.564 - 0.257i)T + (24.2 + 27.9i)T^{2} \)
41 \( 1 + (5.49 - 2.50i)T + (26.8 - 30.9i)T^{2} \)
43 \( 1 + (-0.0168 - 0.0261i)T + (-17.8 + 39.1i)T^{2} \)
47 \( 1 - 6.32iT - 47T^{2} \)
53 \( 1 + (8.44 - 2.47i)T + (44.5 - 28.6i)T^{2} \)
59 \( 1 + (3.12 - 10.6i)T + (-49.6 - 31.8i)T^{2} \)
61 \( 1 + (3.28 - 5.11i)T + (-25.3 - 55.4i)T^{2} \)
67 \( 1 + (3.90 + 3.38i)T + (9.53 + 66.3i)T^{2} \)
71 \( 1 + (11.2 + 9.78i)T + (10.1 + 70.2i)T^{2} \)
73 \( 1 + (1.26 + 8.76i)T + (-70.0 + 20.5i)T^{2} \)
79 \( 1 + (4.50 - 15.3i)T + (-66.4 - 42.7i)T^{2} \)
83 \( 1 + (-0.284 + 0.623i)T + (-54.3 - 62.7i)T^{2} \)
89 \( 1 + (-5.96 + 3.83i)T + (36.9 - 80.9i)T^{2} \)
97 \( 1 + (-10.3 + 4.73i)T + (63.5 - 73.3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.37646149945123863288440758332, −9.061433433514513802931952821628, −8.217728304684116563611801151689, −7.44056717372540597801279788462, −6.37745706239034654152894112802, −5.75199260779769170846929544748, −4.35914153890916429159940532651, −2.89609907160178605763811422029, −1.79261871260388750068388292873, −0.12901919614484688279577895089, 1.78096325642006907833945699067, 3.73082686041856064445907653715, 4.79762732645366882824790137080, 5.62310216675108505990585058471, 6.42698951937348836278312782055, 7.48160455212915780532889836246, 8.529993317623594932381287759486, 9.243096419912835073702065580826, 10.19912478086000168938280940820, 10.63590779772979916666902053062

Graph of the $Z$-function along the critical line