Properties

Label 2-690-23.8-c1-0-14
Degree $2$
Conductor $690$
Sign $-0.487 + 0.872i$
Analytic cond. $5.50967$
Root an. cond. $2.34727$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.142 + 0.989i)2-s + (−0.415 − 0.909i)3-s + (−0.959 − 0.281i)4-s + (0.654 + 0.755i)5-s + (0.959 − 0.281i)6-s + (−1.25 − 0.807i)7-s + (0.415 − 0.909i)8-s + (−0.654 + 0.755i)9-s + (−0.841 + 0.540i)10-s + (−0.517 − 3.59i)11-s + (0.142 + 0.989i)12-s + (−2.43 + 1.56i)13-s + (0.978 − 1.12i)14-s + (0.415 − 0.909i)15-s + (0.841 + 0.540i)16-s + (−2.69 + 0.790i)17-s + ⋯
L(s)  = 1  + (−0.100 + 0.699i)2-s + (−0.239 − 0.525i)3-s + (−0.479 − 0.140i)4-s + (0.292 + 0.337i)5-s + (0.391 − 0.115i)6-s + (−0.475 − 0.305i)7-s + (0.146 − 0.321i)8-s + (−0.218 + 0.251i)9-s + (−0.266 + 0.170i)10-s + (−0.156 − 1.08i)11-s + (0.0410 + 0.285i)12-s + (−0.674 + 0.433i)13-s + (0.261 − 0.301i)14-s + (0.107 − 0.234i)15-s + (0.210 + 0.135i)16-s + (−0.653 + 0.191i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 690 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.487 + 0.872i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 690 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.487 + 0.872i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(690\)    =    \(2 \cdot 3 \cdot 5 \cdot 23\)
Sign: $-0.487 + 0.872i$
Analytic conductor: \(5.50967\)
Root analytic conductor: \(2.34727\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{690} (31, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 690,\ (\ :1/2),\ -0.487 + 0.872i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.202557 - 0.345210i\)
\(L(\frac12)\) \(\approx\) \(0.202557 - 0.345210i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.142 - 0.989i)T \)
3 \( 1 + (0.415 + 0.909i)T \)
5 \( 1 + (-0.654 - 0.755i)T \)
23 \( 1 + (3.70 + 3.04i)T \)
good7 \( 1 + (1.25 + 0.807i)T + (2.90 + 6.36i)T^{2} \)
11 \( 1 + (0.517 + 3.59i)T + (-10.5 + 3.09i)T^{2} \)
13 \( 1 + (2.43 - 1.56i)T + (5.40 - 11.8i)T^{2} \)
17 \( 1 + (2.69 - 0.790i)T + (14.3 - 9.19i)T^{2} \)
19 \( 1 + (1.45 + 0.426i)T + (15.9 + 10.2i)T^{2} \)
29 \( 1 + (5.62 - 1.65i)T + (24.3 - 15.6i)T^{2} \)
31 \( 1 + (-2.97 + 6.52i)T + (-20.3 - 23.4i)T^{2} \)
37 \( 1 + (-0.584 + 0.675i)T + (-5.26 - 36.6i)T^{2} \)
41 \( 1 + (2.84 + 3.28i)T + (-5.83 + 40.5i)T^{2} \)
43 \( 1 + (-0.580 - 1.27i)T + (-28.1 + 32.4i)T^{2} \)
47 \( 1 + 5.18T + 47T^{2} \)
53 \( 1 + (6.33 + 4.07i)T + (22.0 + 48.2i)T^{2} \)
59 \( 1 + (2.60 - 1.67i)T + (24.5 - 53.6i)T^{2} \)
61 \( 1 + (-3.11 + 6.82i)T + (-39.9 - 46.1i)T^{2} \)
67 \( 1 + (0.328 - 2.28i)T + (-64.2 - 18.8i)T^{2} \)
71 \( 1 + (0.0472 - 0.328i)T + (-68.1 - 20.0i)T^{2} \)
73 \( 1 + (6.08 + 1.78i)T + (61.4 + 39.4i)T^{2} \)
79 \( 1 + (-1.62 + 1.04i)T + (32.8 - 71.8i)T^{2} \)
83 \( 1 + (-7.84 + 9.05i)T + (-11.8 - 82.1i)T^{2} \)
89 \( 1 + (-2.81 - 6.16i)T + (-58.2 + 67.2i)T^{2} \)
97 \( 1 + (-9.31 - 10.7i)T + (-13.8 + 96.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.11813913524603557122053823994, −9.228086597819549329144747706325, −8.298246648240880729390734709702, −7.45664449973573588832673938641, −6.50021016556454405722465812069, −6.07394428594946044025389352818, −4.89539860143924617624133708041, −3.62887370767223210002561502442, −2.18298156376843837445690201229, −0.21082511393962843399630122310, 1.89008857898561734658137260739, 3.06451021222530027226273541382, 4.34590529032605507768322185275, 5.08102988185201309141271177192, 6.13077668712216917401550516732, 7.32961833630210711873604104781, 8.418432162341023867208963702157, 9.450224939898825854593928952842, 9.813314338003080218422054705787, 10.60541538644977991319500704009

Graph of the $Z$-function along the critical line