Properties

Label 8-690e4-1.1-c1e4-0-3
Degree $8$
Conductor $226671210000$
Sign $1$
Analytic cond. $921.520$
Root an. cond. $2.34727$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·3-s + 12·7-s + 8·9-s + 8·13-s − 16-s + 48·21-s − 8·25-s + 12·27-s + 8·31-s + 24·37-s + 32·39-s − 4·48-s + 72·49-s − 40·61-s + 96·63-s − 40·67-s − 4·73-s − 32·75-s + 23·81-s + 96·91-s + 32·93-s − 12·97-s + 20·103-s + 96·111-s − 12·112-s + 64·117-s + 8·121-s + ⋯
L(s)  = 1  + 2.30·3-s + 4.53·7-s + 8/3·9-s + 2.21·13-s − 1/4·16-s + 10.4·21-s − 8/5·25-s + 2.30·27-s + 1.43·31-s + 3.94·37-s + 5.12·39-s − 0.577·48-s + 72/7·49-s − 5.12·61-s + 12.0·63-s − 4.88·67-s − 0.468·73-s − 3.69·75-s + 23/9·81-s + 10.0·91-s + 3.31·93-s − 1.21·97-s + 1.97·103-s + 9.11·111-s − 1.13·112-s + 5.91·117-s + 8/11·121-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{4} \cdot 5^{4} \cdot 23^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{4} \cdot 5^{4} \cdot 23^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{4} \cdot 3^{4} \cdot 5^{4} \cdot 23^{4}\)
Sign: $1$
Analytic conductor: \(921.520\)
Root analytic conductor: \(2.34727\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{4} \cdot 3^{4} \cdot 5^{4} \cdot 23^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(18.09775463\)
\(L(\frac12)\) \(\approx\) \(18.09775463\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2^2$ \( 1 + T^{4} \)
3$C_2^2$ \( 1 - 4 T + 8 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
5$C_2^2$ \( 1 + 8 T^{2} + p^{2} T^{4} \)
23$C_2^2$ \( 1 + T^{4} \)
good7$C_2^2$ \( ( 1 - 6 T + 18 T^{2} - 6 p T^{3} + p^{2} T^{4} )^{2} \)
11$C_2^2$ \( ( 1 - 4 T^{2} + p^{2} T^{4} )^{2} \)
13$C_2^2$ \( ( 1 - 4 T + 8 T^{2} - 4 p T^{3} + p^{2} T^{4} )^{2} \)
17$C_2^2$$\times$$C_2^2$ \( ( 1 - 8 T + 32 T^{2} - 8 p T^{3} + p^{2} T^{4} )( 1 + 8 T + 32 T^{2} + 8 p T^{3} + p^{2} T^{4} ) \)
19$C_2^2$ \( ( 1 - 22 T^{2} + p^{2} T^{4} )^{2} \)
29$C_2^2$ \( ( 1 + 8 T^{2} + p^{2} T^{4} )^{2} \)
31$C_2$ \( ( 1 - 2 T + p T^{2} )^{4} \)
37$C_2^2$ \( ( 1 - 12 T + 72 T^{2} - 12 p T^{3} + p^{2} T^{4} )^{2} \)
41$C_2^2$ \( ( 1 - 50 T^{2} + p^{2} T^{4} )^{2} \)
43$C_2^2$ \( ( 1 + p^{2} T^{4} )^{2} \)
47$C_2^3$ \( 1 - 1918 T^{4} + p^{4} T^{8} \)
53$C_2^2$$\times$$C_2^2$ \( ( 1 - 56 T^{2} + p^{2} T^{4} )( 1 + 56 T^{2} + p^{2} T^{4} ) \)
59$C_2^2$ \( ( 1 + 116 T^{2} + p^{2} T^{4} )^{2} \)
61$C_2$ \( ( 1 + 10 T + p T^{2} )^{4} \)
67$C_2^2$ \( ( 1 + 20 T + 200 T^{2} + 20 p T^{3} + p^{2} T^{4} )^{2} \)
71$C_2^2$ \( ( 1 - 110 T^{2} + p^{2} T^{4} )^{2} \)
73$C_2^2$ \( ( 1 + 2 T + 2 T^{2} + 2 p T^{3} + p^{2} T^{4} )^{2} \)
79$C_2^2$ \( ( 1 + 38 T^{2} + p^{2} T^{4} )^{2} \)
83$C_2^3$ \( 1 - 13294 T^{4} + p^{4} T^{8} \)
89$C_2^2$ \( ( 1 + 50 T^{2} + p^{2} T^{4} )^{2} \)
97$C_2^2$ \( ( 1 + 6 T + 18 T^{2} + 6 p T^{3} + p^{2} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.78014710802500698015668123632, −7.41367817642557327183195350854, −7.36326794087583361470572873689, −7.33162434879645579830435576238, −6.49046827055773506818304654802, −6.14575115115453145280815326271, −6.10378474590593660329266067126, −5.94709448879461028593545111621, −5.87087569914698392670761710036, −5.05998737123769107944921199391, −4.92102442814472909164924446242, −4.85146624321649127553217899578, −4.45413902013504883758164319173, −4.30012948125587578638801145364, −4.26858302669838491804884666841, −3.74138766187394430470124594675, −3.66184650476906617790581911581, −3.02260025143626698054979396847, −2.77582060923752359984034529320, −2.59066299140401673991094262870, −2.29778624401432072462176375136, −1.62631062377066928415029251134, −1.58375035993343888500925056961, −1.39486749739789990693725664237, −1.12989471900069496180830158803, 1.12989471900069496180830158803, 1.39486749739789990693725664237, 1.58375035993343888500925056961, 1.62631062377066928415029251134, 2.29778624401432072462176375136, 2.59066299140401673991094262870, 2.77582060923752359984034529320, 3.02260025143626698054979396847, 3.66184650476906617790581911581, 3.74138766187394430470124594675, 4.26858302669838491804884666841, 4.30012948125587578638801145364, 4.45413902013504883758164319173, 4.85146624321649127553217899578, 4.92102442814472909164924446242, 5.05998737123769107944921199391, 5.87087569914698392670761710036, 5.94709448879461028593545111621, 6.10378474590593660329266067126, 6.14575115115453145280815326271, 6.49046827055773506818304654802, 7.33162434879645579830435576238, 7.36326794087583361470572873689, 7.41367817642557327183195350854, 7.78014710802500698015668123632

Graph of the $Z$-function along the critical line