Properties

Label 2-69-1.1-c7-0-0
Degree $2$
Conductor $69$
Sign $1$
Analytic cond. $21.5545$
Root an. cond. $4.64268$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 16.5·2-s + 27·3-s + 144.·4-s − 425.·5-s − 445.·6-s − 1.50e3·7-s − 270.·8-s + 729·9-s + 7.02e3·10-s − 566.·11-s + 3.89e3·12-s − 1.04e4·13-s + 2.47e4·14-s − 1.14e4·15-s − 1.40e4·16-s + 8.18e3·17-s − 1.20e4·18-s − 4.87e4·19-s − 6.14e4·20-s − 4.05e4·21-s + 9.35e3·22-s + 1.21e4·23-s − 7.29e3·24-s + 1.02e5·25-s + 1.73e5·26-s + 1.96e4·27-s − 2.16e5·28-s + ⋯
L(s)  = 1  − 1.45·2-s + 0.577·3-s + 1.12·4-s − 1.52·5-s − 0.842·6-s − 1.65·7-s − 0.186·8-s + 0.333·9-s + 2.22·10-s − 0.128·11-s + 0.651·12-s − 1.32·13-s + 2.41·14-s − 0.878·15-s − 0.855·16-s + 0.404·17-s − 0.486·18-s − 1.63·19-s − 1.71·20-s − 0.955·21-s + 0.187·22-s + 0.208·23-s − 0.107·24-s + 1.31·25-s + 1.93·26-s + 0.192·27-s − 1.86·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 69 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 69 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(69\)    =    \(3 \cdot 23\)
Sign: $1$
Analytic conductor: \(21.5545\)
Root analytic conductor: \(4.64268\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 69,\ (\ :7/2),\ 1)\)

Particular Values

\(L(4)\) \(\approx\) \(0.2407390265\)
\(L(\frac12)\) \(\approx\) \(0.2407390265\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - 27T \)
23 \( 1 - 1.21e4T \)
good2 \( 1 + 16.5T + 128T^{2} \)
5 \( 1 + 425.T + 7.81e4T^{2} \)
7 \( 1 + 1.50e3T + 8.23e5T^{2} \)
11 \( 1 + 566.T + 1.94e7T^{2} \)
13 \( 1 + 1.04e4T + 6.27e7T^{2} \)
17 \( 1 - 8.18e3T + 4.10e8T^{2} \)
19 \( 1 + 4.87e4T + 8.93e8T^{2} \)
29 \( 1 + 7.85e4T + 1.72e10T^{2} \)
31 \( 1 - 1.82e5T + 2.75e10T^{2} \)
37 \( 1 + 3.97e5T + 9.49e10T^{2} \)
41 \( 1 - 5.67e5T + 1.94e11T^{2} \)
43 \( 1 - 7.51e5T + 2.71e11T^{2} \)
47 \( 1 + 7.48e5T + 5.06e11T^{2} \)
53 \( 1 - 3.77e5T + 1.17e12T^{2} \)
59 \( 1 - 2.10e6T + 2.48e12T^{2} \)
61 \( 1 - 7.92e5T + 3.14e12T^{2} \)
67 \( 1 + 2.41e5T + 6.06e12T^{2} \)
71 \( 1 + 4.72e6T + 9.09e12T^{2} \)
73 \( 1 + 2.33e6T + 1.10e13T^{2} \)
79 \( 1 - 7.94e5T + 1.92e13T^{2} \)
83 \( 1 - 5.22e6T + 2.71e13T^{2} \)
89 \( 1 + 5.72e6T + 4.42e13T^{2} \)
97 \( 1 + 7.01e6T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.00315893150941151247969652315, −12.08121984060091362637538856187, −10.61108168293431568342193221288, −9.688179708307984094221006976024, −8.680603763942186525545959954656, −7.64652025630109416054906330077, −6.81499237963137738237818862491, −4.12392635385709258768362526194, −2.66847044944035791687862439662, −0.37616687599646011118164969407, 0.37616687599646011118164969407, 2.66847044944035791687862439662, 4.12392635385709258768362526194, 6.81499237963137738237818862491, 7.64652025630109416054906330077, 8.680603763942186525545959954656, 9.688179708307984094221006976024, 10.61108168293431568342193221288, 12.08121984060091362637538856187, 13.00315893150941151247969652315

Graph of the $Z$-function along the critical line