Properties

Label 2-69-1.1-c5-0-4
Degree $2$
Conductor $69$
Sign $1$
Analytic cond. $11.0664$
Root an. cond. $3.32663$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.233·2-s − 9·3-s − 31.9·4-s + 18.8·5-s + 2.09·6-s − 97.3·7-s + 14.9·8-s + 81·9-s − 4.40·10-s + 331.·11-s + 287.·12-s − 212.·13-s + 22.7·14-s − 169.·15-s + 1.01e3·16-s + 1.97e3·17-s − 18.8·18-s + 1.41e3·19-s − 603.·20-s + 876.·21-s − 77.2·22-s + 529·23-s − 134.·24-s − 2.76e3·25-s + 49.5·26-s − 729·27-s + 3.11e3·28-s + ⋯
L(s)  = 1  − 0.0412·2-s − 0.577·3-s − 0.998·4-s + 0.337·5-s + 0.0237·6-s − 0.751·7-s + 0.0823·8-s + 0.333·9-s − 0.0139·10-s + 0.825·11-s + 0.576·12-s − 0.348·13-s + 0.0309·14-s − 0.195·15-s + 0.994·16-s + 1.65·17-s − 0.0137·18-s + 0.897·19-s − 0.337·20-s + 0.433·21-s − 0.0340·22-s + 0.208·23-s − 0.0475·24-s − 0.885·25-s + 0.0143·26-s − 0.192·27-s + 0.749·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 69 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 69 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(69\)    =    \(3 \cdot 23\)
Sign: $1$
Analytic conductor: \(11.0664\)
Root analytic conductor: \(3.32663\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 69,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(1.096278664\)
\(L(\frac12)\) \(\approx\) \(1.096278664\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + 9T \)
23 \( 1 - 529T \)
good2 \( 1 + 0.233T + 32T^{2} \)
5 \( 1 - 18.8T + 3.12e3T^{2} \)
7 \( 1 + 97.3T + 1.68e4T^{2} \)
11 \( 1 - 331.T + 1.61e5T^{2} \)
13 \( 1 + 212.T + 3.71e5T^{2} \)
17 \( 1 - 1.97e3T + 1.41e6T^{2} \)
19 \( 1 - 1.41e3T + 2.47e6T^{2} \)
29 \( 1 + 1.78e3T + 2.05e7T^{2} \)
31 \( 1 - 9.98e3T + 2.86e7T^{2} \)
37 \( 1 - 3.47e3T + 6.93e7T^{2} \)
41 \( 1 - 3.57e3T + 1.15e8T^{2} \)
43 \( 1 - 3.38e3T + 1.47e8T^{2} \)
47 \( 1 + 2.31e4T + 2.29e8T^{2} \)
53 \( 1 + 1.46e4T + 4.18e8T^{2} \)
59 \( 1 - 2.73e4T + 7.14e8T^{2} \)
61 \( 1 - 9.71e3T + 8.44e8T^{2} \)
67 \( 1 - 6.61e4T + 1.35e9T^{2} \)
71 \( 1 - 2.34e4T + 1.80e9T^{2} \)
73 \( 1 - 5.81e3T + 2.07e9T^{2} \)
79 \( 1 - 5.77e4T + 3.07e9T^{2} \)
83 \( 1 - 4.89e4T + 3.93e9T^{2} \)
89 \( 1 - 9.37e4T + 5.58e9T^{2} \)
97 \( 1 - 1.50e5T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.71612637561532631766554243897, −12.64842566462738427834007242351, −11.71636962928173137121381413647, −9.920450504393496299288689827551, −9.575120421612229547603809582017, −7.901385799922979622912873991490, −6.29728703296672761205215211917, −5.11870551815242977273220823444, −3.55422973256952160286379555352, −0.890969353120466293456457410360, 0.890969353120466293456457410360, 3.55422973256952160286379555352, 5.11870551815242977273220823444, 6.29728703296672761205215211917, 7.901385799922979622912873991490, 9.575120421612229547603809582017, 9.920450504393496299288689827551, 11.71636962928173137121381413647, 12.64842566462738427834007242351, 13.71612637561532631766554243897

Graph of the $Z$-function along the critical line