Properties

Label 2-688-1.1-c5-0-44
Degree $2$
Conductor $688$
Sign $-1$
Analytic cond. $110.344$
Root an. cond. $10.5044$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 7.84·3-s − 107.·5-s + 25.5·7-s − 181.·9-s − 512.·11-s + 862.·13-s + 840.·15-s − 1.52e3·17-s + 1.54e3·19-s − 200.·21-s + 3.12e3·23-s + 8.34e3·25-s + 3.32e3·27-s − 947.·29-s − 339.·31-s + 4.01e3·33-s − 2.73e3·35-s − 7.44e3·37-s − 6.76e3·39-s + 5.11e3·41-s + 1.84e3·43-s + 1.94e4·45-s + 1.71e4·47-s − 1.61e4·49-s + 1.19e4·51-s + 1.80e4·53-s + 5.48e4·55-s + ⋯
L(s)  = 1  − 0.503·3-s − 1.91·5-s + 0.196·7-s − 0.746·9-s − 1.27·11-s + 1.41·13-s + 0.963·15-s − 1.27·17-s + 0.980·19-s − 0.0990·21-s + 1.23·23-s + 2.67·25-s + 0.878·27-s − 0.209·29-s − 0.0634·31-s + 0.642·33-s − 0.377·35-s − 0.894·37-s − 0.712·39-s + 0.475·41-s + 0.152·43-s + 1.43·45-s + 1.13·47-s − 0.961·49-s + 0.642·51-s + 0.884·53-s + 2.44·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 688 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 688 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(688\)    =    \(2^{4} \cdot 43\)
Sign: $-1$
Analytic conductor: \(110.344\)
Root analytic conductor: \(10.5044\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 688,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
43 \( 1 - 1.84e3T \)
good3 \( 1 + 7.84T + 243T^{2} \)
5 \( 1 + 107.T + 3.12e3T^{2} \)
7 \( 1 - 25.5T + 1.68e4T^{2} \)
11 \( 1 + 512.T + 1.61e5T^{2} \)
13 \( 1 - 862.T + 3.71e5T^{2} \)
17 \( 1 + 1.52e3T + 1.41e6T^{2} \)
19 \( 1 - 1.54e3T + 2.47e6T^{2} \)
23 \( 1 - 3.12e3T + 6.43e6T^{2} \)
29 \( 1 + 947.T + 2.05e7T^{2} \)
31 \( 1 + 339.T + 2.86e7T^{2} \)
37 \( 1 + 7.44e3T + 6.93e7T^{2} \)
41 \( 1 - 5.11e3T + 1.15e8T^{2} \)
47 \( 1 - 1.71e4T + 2.29e8T^{2} \)
53 \( 1 - 1.80e4T + 4.18e8T^{2} \)
59 \( 1 + 1.70e4T + 7.14e8T^{2} \)
61 \( 1 - 1.06e4T + 8.44e8T^{2} \)
67 \( 1 - 8.79e3T + 1.35e9T^{2} \)
71 \( 1 - 7.70e4T + 1.80e9T^{2} \)
73 \( 1 + 7.96e3T + 2.07e9T^{2} \)
79 \( 1 + 6.89e4T + 3.07e9T^{2} \)
83 \( 1 + 4.08e4T + 3.93e9T^{2} \)
89 \( 1 + 8.36e4T + 5.58e9T^{2} \)
97 \( 1 - 1.59e5T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.898618688790946536442671182915, −8.414444316726508383727905578372, −7.57828115914648979526830748265, −6.76806032979249771746151687197, −5.51863526803212538435450055627, −4.70709580976281467539195174143, −3.66070991376605927114086365434, −2.80200430752710043782088438027, −0.874146147763291120491155032018, 0, 0.874146147763291120491155032018, 2.80200430752710043782088438027, 3.66070991376605927114086365434, 4.70709580976281467539195174143, 5.51863526803212538435450055627, 6.76806032979249771746151687197, 7.57828115914648979526830748265, 8.414444316726508383727905578372, 8.898618688790946536442671182915

Graph of the $Z$-function along the critical line