Properties

Label 2-684-1.1-c5-0-34
Degree $2$
Conductor $684$
Sign $-1$
Analytic cond. $109.702$
Root an. cond. $10.4738$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 64.0·5-s + 65.8·7-s − 635.·11-s + 467.·13-s − 522.·17-s − 361·19-s + 3.22e3·23-s + 981.·25-s − 6.97e3·29-s − 3.38e3·31-s + 4.21e3·35-s − 1.34e4·37-s − 7.10e3·41-s − 1.40e4·43-s + 1.44e3·47-s − 1.24e4·49-s + 3.71e4·53-s − 4.07e4·55-s − 3.78e4·59-s + 3.96e4·61-s + 2.99e4·65-s − 1.10e4·67-s − 9.09e3·71-s + 2.99e4·73-s − 4.18e4·77-s − 3.32e4·79-s + 5.07e4·83-s + ⋯
L(s)  = 1  + 1.14·5-s + 0.507·7-s − 1.58·11-s + 0.767·13-s − 0.438·17-s − 0.229·19-s + 1.26·23-s + 0.313·25-s − 1.54·29-s − 0.633·31-s + 0.581·35-s − 1.61·37-s − 0.660·41-s − 1.15·43-s + 0.0953·47-s − 0.742·49-s + 1.81·53-s − 1.81·55-s − 1.41·59-s + 1.36·61-s + 0.880·65-s − 0.299·67-s − 0.214·71-s + 0.657·73-s − 0.804·77-s − 0.599·79-s + 0.808·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 684 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 684 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(684\)    =    \(2^{2} \cdot 3^{2} \cdot 19\)
Sign: $-1$
Analytic conductor: \(109.702\)
Root analytic conductor: \(10.4738\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 684,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
19 \( 1 + 361T \)
good5 \( 1 - 64.0T + 3.12e3T^{2} \)
7 \( 1 - 65.8T + 1.68e4T^{2} \)
11 \( 1 + 635.T + 1.61e5T^{2} \)
13 \( 1 - 467.T + 3.71e5T^{2} \)
17 \( 1 + 522.T + 1.41e6T^{2} \)
23 \( 1 - 3.22e3T + 6.43e6T^{2} \)
29 \( 1 + 6.97e3T + 2.05e7T^{2} \)
31 \( 1 + 3.38e3T + 2.86e7T^{2} \)
37 \( 1 + 1.34e4T + 6.93e7T^{2} \)
41 \( 1 + 7.10e3T + 1.15e8T^{2} \)
43 \( 1 + 1.40e4T + 1.47e8T^{2} \)
47 \( 1 - 1.44e3T + 2.29e8T^{2} \)
53 \( 1 - 3.71e4T + 4.18e8T^{2} \)
59 \( 1 + 3.78e4T + 7.14e8T^{2} \)
61 \( 1 - 3.96e4T + 8.44e8T^{2} \)
67 \( 1 + 1.10e4T + 1.35e9T^{2} \)
71 \( 1 + 9.09e3T + 1.80e9T^{2} \)
73 \( 1 - 2.99e4T + 2.07e9T^{2} \)
79 \( 1 + 3.32e4T + 3.07e9T^{2} \)
83 \( 1 - 5.07e4T + 3.93e9T^{2} \)
89 \( 1 - 1.28e5T + 5.58e9T^{2} \)
97 \( 1 + 1.11e5T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.231431314642824999989108285309, −8.531665516995655672922298839471, −7.54278292809613097764758198804, −6.56903321195575120154886164823, −5.45385117200077294756647350060, −5.08078255518361660365427284538, −3.54546239632540110426404819866, −2.33946653448576190171848282646, −1.54083994032539700368871739180, 0, 1.54083994032539700368871739180, 2.33946653448576190171848282646, 3.54546239632540110426404819866, 5.08078255518361660365427284538, 5.45385117200077294756647350060, 6.56903321195575120154886164823, 7.54278292809613097764758198804, 8.531665516995655672922298839471, 9.231431314642824999989108285309

Graph of the $Z$-function along the critical line