Properties

Label 4-684e2-1.1-c2e2-0-5
Degree $4$
Conductor $467856$
Sign $1$
Analytic cond. $347.362$
Root an. cond. $4.31713$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·5-s − 2·7-s − 32·11-s + 27·13-s + 22·17-s + 38·19-s + 40·23-s + 25·25-s − 30·29-s + 4·35-s + 24·41-s + 49·43-s + 46·47-s − 95·49-s + 84·53-s + 64·55-s + 114·59-s + 97·61-s − 54·65-s − 45·67-s + 84·71-s − 35·73-s + 64·77-s − 153·79-s + 292·83-s − 44·85-s + 66·89-s + ⋯
L(s)  = 1  − 2/5·5-s − 2/7·7-s − 2.90·11-s + 2.07·13-s + 1.29·17-s + 2·19-s + 1.73·23-s + 25-s − 1.03·29-s + 4/35·35-s + 0.585·41-s + 1.13·43-s + 0.978·47-s − 1.93·49-s + 1.58·53-s + 1.16·55-s + 1.93·59-s + 1.59·61-s − 0.830·65-s − 0.671·67-s + 1.18·71-s − 0.479·73-s + 0.831·77-s − 1.93·79-s + 3.51·83-s − 0.517·85-s + 0.741·89-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 467856 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 467856 ^{s/2} \, \Gamma_{\C}(s+1)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(467856\)    =    \(2^{4} \cdot 3^{4} \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(347.362\)
Root analytic conductor: \(4.31713\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 467856,\ (\ :1, 1),\ 1)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(2.654201107\)
\(L(\frac12)\) \(\approx\) \(2.654201107\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
19$C_1$ \( ( 1 - p T )^{2} \)
good5$C_2^2$ \( 1 + 2 T - 21 T^{2} + 2 p^{2} T^{3} + p^{4} T^{4} \)
7$C_2$ \( ( 1 + T + p^{2} T^{2} )^{2} \)
11$C_2$ \( ( 1 + 16 T + p^{2} T^{2} )^{2} \)
13$C_2^2$ \( 1 - 27 T + 412 T^{2} - 27 p^{2} T^{3} + p^{4} T^{4} \)
17$C_2^2$ \( 1 - 22 T + 195 T^{2} - 22 p^{2} T^{3} + p^{4} T^{4} \)
23$C_2^2$ \( 1 - 40 T + 1071 T^{2} - 40 p^{2} T^{3} + p^{4} T^{4} \)
29$C_2^2$ \( 1 + 30 T + 1141 T^{2} + 30 p^{2} T^{3} + p^{4} T^{4} \)
31$C_2^2$ \( 1 + 601 T^{2} + p^{4} T^{4} \)
37$C_2^2$ \( 1 - 2495 T^{2} + p^{4} T^{4} \)
41$C_2^2$ \( 1 - 24 T + 1873 T^{2} - 24 p^{2} T^{3} + p^{4} T^{4} \)
43$C_2^2$ \( 1 - 49 T + 552 T^{2} - 49 p^{2} T^{3} + p^{4} T^{4} \)
47$C_2^2$ \( 1 - 46 T - 93 T^{2} - 46 p^{2} T^{3} + p^{4} T^{4} \)
53$C_2^2$ \( 1 - 84 T + 5161 T^{2} - 84 p^{2} T^{3} + p^{4} T^{4} \)
59$C_2^2$ \( 1 - 114 T + 7813 T^{2} - 114 p^{2} T^{3} + p^{4} T^{4} \)
61$C_2^2$ \( 1 - 97 T + 5688 T^{2} - 97 p^{2} T^{3} + p^{4} T^{4} \)
67$C_2^2$ \( 1 + 45 T + 5164 T^{2} + 45 p^{2} T^{3} + p^{4} T^{4} \)
71$C_2^2$ \( 1 - 84 T + 7393 T^{2} - 84 p^{2} T^{3} + p^{4} T^{4} \)
73$C_2^2$ \( 1 + 35 T - 4104 T^{2} + 35 p^{2} T^{3} + p^{4} T^{4} \)
79$C_2$ \( ( 1 + 11 T + p^{2} T^{2} )( 1 + 142 T + p^{2} T^{2} ) \)
83$C_2$ \( ( 1 - 146 T + p^{2} T^{2} )^{2} \)
89$C_2^2$ \( 1 - 66 T + 9373 T^{2} - 66 p^{2} T^{3} + p^{4} T^{4} \)
97$C_2^2$ \( 1 - 108 T + 13297 T^{2} - 108 p^{2} T^{3} + p^{4} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.47581565875536462198855790007, −10.29008753756581841499783632647, −9.538194934722575689320531135803, −9.312121052167459808469163432601, −8.643813702587868256826476155281, −8.314700291319893249103639520274, −7.81859307845830652290363295572, −7.51307232752556592056700426166, −7.17540988824614920469543831922, −6.56661383186208885763347022746, −5.68843933235621825895167758185, −5.55687276631341101514144957769, −5.22792365114790030580674511415, −4.68046421249714392658196457289, −3.60824068578796079756010863262, −3.48602316821814774281724033308, −2.88516715063849563599291067144, −2.36268518168293775311217291288, −1.04997781685056742268644035198, −0.74717614808431635741248711236, 0.74717614808431635741248711236, 1.04997781685056742268644035198, 2.36268518168293775311217291288, 2.88516715063849563599291067144, 3.48602316821814774281724033308, 3.60824068578796079756010863262, 4.68046421249714392658196457289, 5.22792365114790030580674511415, 5.55687276631341101514144957769, 5.68843933235621825895167758185, 6.56661383186208885763347022746, 7.17540988824614920469543831922, 7.51307232752556592056700426166, 7.81859307845830652290363295572, 8.314700291319893249103639520274, 8.643813702587868256826476155281, 9.312121052167459808469163432601, 9.538194934722575689320531135803, 10.29008753756581841499783632647, 10.47581565875536462198855790007

Graph of the $Z$-function along the critical line