Properties

Label 8-684e4-1.1-c2e4-0-1
Degree $8$
Conductor $218889236736$
Sign $1$
Analytic cond. $120660.$
Root an. cond. $4.31713$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 10·7-s + 76·19-s + 31·25-s + 170·43-s + 123·49-s + 206·61-s + 50·73-s − 233·121-s + 127-s + 131-s − 760·133-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 676·169-s + 173-s − 310·175-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + ⋯
L(s)  = 1  − 1.42·7-s + 4·19-s + 1.23·25-s + 3.95·43-s + 2.51·49-s + 3.37·61-s + 0.684·73-s − 1.92·121-s + 0.00787·127-s + 0.00763·131-s − 5.71·133-s + 0.00729·137-s + 0.00719·139-s + 0.00671·149-s + 0.00662·151-s + 0.00636·157-s + 0.00613·163-s + 0.00598·167-s + 4·169-s + 0.00578·173-s − 1.77·175-s + 0.00558·179-s + 0.00552·181-s + 0.00523·191-s + 0.00518·193-s + 0.00507·197-s + 0.00502·199-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 3^{8} \cdot 19^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(3-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 3^{8} \cdot 19^{4}\right)^{s/2} \, \Gamma_{\C}(s+1)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{8} \cdot 3^{8} \cdot 19^{4}\)
Sign: $1$
Analytic conductor: \(120660.\)
Root analytic conductor: \(4.31713\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{8} \cdot 3^{8} \cdot 19^{4} ,\ ( \ : 1, 1, 1, 1 ),\ 1 )\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(4.978832456\)
\(L(\frac12)\) \(\approx\) \(4.978832456\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
19$C_1$ \( ( 1 - p T )^{4} \)
good5$C_2^3$ \( 1 - 31 T^{2} + 336 T^{4} - 31 p^{4} T^{6} + p^{8} T^{8} \)
7$C_2^2$ \( ( 1 + 5 T - 24 T^{2} + 5 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
11$C_2^3$ \( 1 + 233 T^{2} + 39648 T^{4} + 233 p^{4} T^{6} + p^{8} T^{8} \)
13$C_1$$\times$$C_1$ \( ( 1 - p T )^{4}( 1 + p T )^{4} \)
17$C_2^3$ \( 1 + 353 T^{2} + 41088 T^{4} + 353 p^{4} T^{6} + p^{8} T^{8} \)
23$C_2^2$ \( ( 1 - 158 T^{2} + p^{4} T^{4} )^{2} \)
29$C_1$$\times$$C_1$ \( ( 1 - p T )^{4}( 1 + p T )^{4} \)
31$C_1$$\times$$C_1$ \( ( 1 - p T )^{4}( 1 + p T )^{4} \)
37$C_1$$\times$$C_1$ \( ( 1 - p T )^{4}( 1 + p T )^{4} \)
41$C_1$$\times$$C_1$ \( ( 1 - p T )^{4}( 1 + p T )^{4} \)
43$C_2^2$ \( ( 1 - 85 T + 5376 T^{2} - 85 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
47$C_2^3$ \( 1 - 1207 T^{2} - 3422832 T^{4} - 1207 p^{4} T^{6} + p^{8} T^{8} \)
53$C_1$$\times$$C_1$ \( ( 1 - p T )^{4}( 1 + p T )^{4} \)
59$C_1$$\times$$C_1$ \( ( 1 - p T )^{4}( 1 + p T )^{4} \)
61$C_2^2$ \( ( 1 - 103 T + 6888 T^{2} - 103 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
67$C_1$$\times$$C_1$ \( ( 1 - p T )^{4}( 1 + p T )^{4} \)
71$C_1$$\times$$C_1$ \( ( 1 - p T )^{4}( 1 + p T )^{4} \)
73$C_2^2$ \( ( 1 - 25 T - 4704 T^{2} - 25 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
79$C_1$$\times$$C_1$ \( ( 1 - p T )^{4}( 1 + p T )^{4} \)
83$C_2^2$ \( ( 1 - 5678 T^{2} + p^{4} T^{4} )^{2} \)
89$C_1$$\times$$C_1$ \( ( 1 - p T )^{4}( 1 + p T )^{4} \)
97$C_1$$\times$$C_1$ \( ( 1 - p T )^{4}( 1 + p T )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.42662078739164856114452663119, −7.10219887956866018569697394286, −6.89199562181837237763244105796, −6.61333178367685072636144820323, −6.56073586274598806390546434394, −6.03208125620247785894557334116, −5.77197329402580987089122235561, −5.76845037720168001067726041610, −5.45965206714618937082383471334, −5.22575714098768762590399189514, −4.88616679476817671827706909345, −4.85901110000881065939756669072, −4.31217927205019777937871646645, −3.79433736886027074657477955305, −3.77808947308780840039653908236, −3.75499855966981562531210366991, −3.23499576765945060923441191991, −2.85198076745675211866879106011, −2.68838761327096086067058740339, −2.52970888796765841691896996975, −2.15802858015011876427449359354, −1.31846967635821519710982968441, −1.05209058676810083659733323207, −0.870296799611138544644627679045, −0.45778269775088052822274685662, 0.45778269775088052822274685662, 0.870296799611138544644627679045, 1.05209058676810083659733323207, 1.31846967635821519710982968441, 2.15802858015011876427449359354, 2.52970888796765841691896996975, 2.68838761327096086067058740339, 2.85198076745675211866879106011, 3.23499576765945060923441191991, 3.75499855966981562531210366991, 3.77808947308780840039653908236, 3.79433736886027074657477955305, 4.31217927205019777937871646645, 4.85901110000881065939756669072, 4.88616679476817671827706909345, 5.22575714098768762590399189514, 5.45965206714618937082383471334, 5.76845037720168001067726041610, 5.77197329402580987089122235561, 6.03208125620247785894557334116, 6.56073586274598806390546434394, 6.61333178367685072636144820323, 6.89199562181837237763244105796, 7.10219887956866018569697394286, 7.42662078739164856114452663119

Graph of the $Z$-function along the critical line