| L(s) = 1 | + (0.438 + 1.67i)3-s − 4.24·5-s + (1.38 + 2.39i)7-s + (−2.61 + 1.46i)9-s + (−1.31 − 2.26i)11-s + (0.0473 + 0.0819i)13-s + (−1.86 − 7.11i)15-s + (−0.170 − 0.295i)17-s + (−1.77 − 3.97i)19-s + (−3.40 + 3.36i)21-s + (−2.31 − 4.00i)23-s + 13.0·25-s + (−3.60 − 3.73i)27-s − 1.41·29-s + (1.43 − 2.48i)31-s + ⋯ |
| L(s) = 1 | + (0.253 + 0.967i)3-s − 1.89·5-s + (0.522 + 0.904i)7-s + (−0.871 + 0.489i)9-s + (−0.395 − 0.684i)11-s + (0.0131 + 0.0227i)13-s + (−0.480 − 1.83i)15-s + (−0.0413 − 0.0715i)17-s + (−0.408 − 0.912i)19-s + (−0.743 + 0.734i)21-s + (−0.481 − 0.834i)23-s + 2.60·25-s + (−0.694 − 0.719i)27-s − 0.262·29-s + (0.257 − 0.446i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 684 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.626 + 0.779i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 684 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.626 + 0.779i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.0316906 - 0.0661454i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.0316906 - 0.0661454i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.438 - 1.67i)T \) |
| 19 | \( 1 + (1.77 + 3.97i)T \) |
| good | 5 | \( 1 + 4.24T + 5T^{2} \) |
| 7 | \( 1 + (-1.38 - 2.39i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (1.31 + 2.26i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (-0.0473 - 0.0819i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (0.170 + 0.295i)T + (-8.5 + 14.7i)T^{2} \) |
| 23 | \( 1 + (2.31 + 4.00i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + 1.41T + 29T^{2} \) |
| 31 | \( 1 + (-1.43 + 2.48i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + 10.6T + 37T^{2} \) |
| 41 | \( 1 + 2.42T + 41T^{2} \) |
| 43 | \( 1 + (6.27 - 10.8i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + 6.84T + 47T^{2} \) |
| 53 | \( 1 + (2.21 - 3.83i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 - 13.5T + 59T^{2} \) |
| 61 | \( 1 - 1.31T + 61T^{2} \) |
| 67 | \( 1 + (3.61 + 6.25i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (-5.00 - 8.67i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (4.76 + 8.24i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (1.76 - 3.06i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (1.93 + 3.35i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (5.91 - 10.2i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-0.215 + 0.372i)T + (-48.5 - 84.0i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.19692440085656052887645515326, −10.34066811562464958704387195277, −9.051110186939982496408740925894, −8.353111608540927401215454404655, −8.027051473097345366965731519021, −6.69236786856316715151489007195, −5.27291261176616063296142169729, −4.56916384930894147108335612076, −3.61049419283752923517228732757, −2.67428135643817164663194278435,
0.03734148335299189123193408063, 1.64727284345173477331605310007, 3.37983789352787473913997284555, 4.09085877496720763884091361291, 5.27271590766200390022605600254, 6.95044814383559917992024059068, 7.25018781989764722318063149441, 8.166923238312710401075195578467, 8.488361166787791782356373595456, 10.10007765452753571560889812361