Properties

Label 2-678-1.1-c3-0-41
Degree $2$
Conductor $678$
Sign $-1$
Analytic cond. $40.0032$
Root an. cond. $6.32481$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s − 3·3-s + 4·4-s − 10.7·5-s − 6·6-s − 3.65·7-s + 8·8-s + 9·9-s − 21.4·10-s + 27.0·11-s − 12·12-s + 20.1·13-s − 7.30·14-s + 32.1·15-s + 16·16-s − 85.6·17-s + 18·18-s + 120.·19-s − 42.8·20-s + 10.9·21-s + 54.1·22-s + 50.4·23-s − 24·24-s − 10.2·25-s + 40.3·26-s − 27·27-s − 14.6·28-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s + 0.5·4-s − 0.958·5-s − 0.408·6-s − 0.197·7-s + 0.353·8-s + 0.333·9-s − 0.677·10-s + 0.742·11-s − 0.288·12-s + 0.430·13-s − 0.139·14-s + 0.553·15-s + 0.250·16-s − 1.22·17-s + 0.235·18-s + 1.44·19-s − 0.479·20-s + 0.113·21-s + 0.525·22-s + 0.457·23-s − 0.204·24-s − 0.0816·25-s + 0.304·26-s − 0.192·27-s − 0.0986·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 678 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 678 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(678\)    =    \(2 \cdot 3 \cdot 113\)
Sign: $-1$
Analytic conductor: \(40.0032\)
Root analytic conductor: \(6.32481\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 678,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 2T \)
3 \( 1 + 3T \)
113 \( 1 + 113T \)
good5 \( 1 + 10.7T + 125T^{2} \)
7 \( 1 + 3.65T + 343T^{2} \)
11 \( 1 - 27.0T + 1.33e3T^{2} \)
13 \( 1 - 20.1T + 2.19e3T^{2} \)
17 \( 1 + 85.6T + 4.91e3T^{2} \)
19 \( 1 - 120.T + 6.85e3T^{2} \)
23 \( 1 - 50.4T + 1.21e4T^{2} \)
29 \( 1 + 292.T + 2.43e4T^{2} \)
31 \( 1 - 23.7T + 2.97e4T^{2} \)
37 \( 1 + 390.T + 5.06e4T^{2} \)
41 \( 1 - 146.T + 6.89e4T^{2} \)
43 \( 1 + 1.06T + 7.95e4T^{2} \)
47 \( 1 + 161.T + 1.03e5T^{2} \)
53 \( 1 + 208.T + 1.48e5T^{2} \)
59 \( 1 + 647.T + 2.05e5T^{2} \)
61 \( 1 - 289.T + 2.26e5T^{2} \)
67 \( 1 + 313.T + 3.00e5T^{2} \)
71 \( 1 - 59.2T + 3.57e5T^{2} \)
73 \( 1 + 84.7T + 3.89e5T^{2} \)
79 \( 1 + 183.T + 4.93e5T^{2} \)
83 \( 1 + 1.05e3T + 5.71e5T^{2} \)
89 \( 1 + 387.T + 7.04e5T^{2} \)
97 \( 1 + 744.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.722263872897702992043103483497, −8.808508211056949990021317265614, −7.59353161391527972287321733284, −6.94059997719564787152066566220, −6.00838594548838131986845514140, −5.00671342156883146847347316447, −4.03540958742229895058325261105, −3.28786863754030857093667626400, −1.56260599289597163395183360885, 0, 1.56260599289597163395183360885, 3.28786863754030857093667626400, 4.03540958742229895058325261105, 5.00671342156883146847347316447, 6.00838594548838131986845514140, 6.94059997719564787152066566220, 7.59353161391527972287321733284, 8.808508211056949990021317265614, 9.722263872897702992043103483497

Graph of the $Z$-function along the critical line