Properties

Label 4-26e4-1.1-c0e2-0-0
Degree $4$
Conductor $456976$
Sign $1$
Analytic cond. $0.113817$
Root an. cond. $0.580833$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4-s + 2·9-s + 16-s + 2·17-s + 25-s − 2·29-s − 2·36-s − 2·49-s − 2·53-s − 2·61-s − 64-s − 2·68-s + 3·81-s − 100-s + 2·101-s − 2·113-s + 2·116-s − 2·121-s + 127-s + 131-s + 137-s + 139-s + 2·144-s + 149-s + 151-s + 4·153-s + 157-s + ⋯
L(s)  = 1  − 4-s + 2·9-s + 16-s + 2·17-s + 25-s − 2·29-s − 2·36-s − 2·49-s − 2·53-s − 2·61-s − 64-s − 2·68-s + 3·81-s − 100-s + 2·101-s − 2·113-s + 2·116-s − 2·121-s + 127-s + 131-s + 137-s + 139-s + 2·144-s + 149-s + 151-s + 4·153-s + 157-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 456976 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 456976 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(456976\)    =    \(2^{4} \cdot 13^{4}\)
Sign: $1$
Analytic conductor: \(0.113817\)
Root analytic conductor: \(0.580833\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 456976,\ (\ :0, 0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.8327570625\)
\(L(\frac12)\) \(\approx\) \(0.8327570625\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + T^{2} \)
13 \( 1 \)
good3$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
5$C_2^2$ \( 1 - T^{2} + T^{4} \)
7$C_2$ \( ( 1 + T^{2} )^{2} \)
11$C_2$ \( ( 1 + T^{2} )^{2} \)
17$C_2$ \( ( 1 - T + T^{2} )^{2} \)
19$C_2$ \( ( 1 + T^{2} )^{2} \)
23$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
29$C_2$ \( ( 1 + T + T^{2} )^{2} \)
31$C_2$ \( ( 1 + T^{2} )^{2} \)
37$C_2^2$ \( 1 - T^{2} + T^{4} \)
41$C_2^2$ \( 1 - T^{2} + T^{4} \)
43$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
47$C_2$ \( ( 1 + T^{2} )^{2} \)
53$C_2$ \( ( 1 + T + T^{2} )^{2} \)
59$C_2$ \( ( 1 + T^{2} )^{2} \)
61$C_2$ \( ( 1 + T + T^{2} )^{2} \)
67$C_2$ \( ( 1 + T^{2} )^{2} \)
71$C_2$ \( ( 1 + T^{2} )^{2} \)
73$C_2^2$ \( 1 - T^{2} + T^{4} \)
79$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
83$C_2$ \( ( 1 + T^{2} )^{2} \)
89$C_2$ \( ( 1 + T^{2} )^{2} \)
97$C_2$ \( ( 1 + T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.69108350503234792112174303004, −10.46870693552330568644087118685, −9.906183274459220138093506176539, −9.658202526604749882294129989996, −9.311721818619462828716432241233, −9.001450219269808719004164924414, −8.049231277810955034779837119765, −8.007991091956880870663342401106, −7.38639700795928015494000202826, −7.26072005063231472595606729850, −6.36258253437526093266638341539, −6.10443864946433196507472156121, −5.31426646929877387509070449192, −4.91554474485232945717649467416, −4.62324686760569529842796746024, −3.81464171922524960755544021108, −3.59096776911207756611741946119, −2.95028313491531740824300178130, −1.62826427500627072966391379375, −1.32004426888021298833398603327, 1.32004426888021298833398603327, 1.62826427500627072966391379375, 2.95028313491531740824300178130, 3.59096776911207756611741946119, 3.81464171922524960755544021108, 4.62324686760569529842796746024, 4.91554474485232945717649467416, 5.31426646929877387509070449192, 6.10443864946433196507472156121, 6.36258253437526093266638341539, 7.26072005063231472595606729850, 7.38639700795928015494000202826, 8.007991091956880870663342401106, 8.049231277810955034779837119765, 9.001450219269808719004164924414, 9.311721818619462828716432241233, 9.658202526604749882294129989996, 9.906183274459220138093506176539, 10.46870693552330568644087118685, 10.69108350503234792112174303004

Graph of the $Z$-function along the critical line