| L(s) = 1 | + (−0.233 + 1.32i)2-s + (−1.70 + 0.300i)3-s + (0.173 + 0.0632i)4-s − 2.33i·6-s + (−0.652 + 0.237i)7-s + (−1.47 + 2.54i)8-s + (2.81 − 1.02i)9-s + (−3.52 − 2.95i)11-s + (−0.315 − 0.0555i)12-s + (0.245 + 1.39i)13-s + (−0.162 − 0.921i)14-s + (−2.75 − 2.31i)16-s + (−1.93 − 3.35i)17-s + (0.701 + 3.98i)18-s + (−3.53 + 6.11i)19-s + ⋯ |
| L(s) = 1 | + (−0.165 + 0.938i)2-s + (−0.984 + 0.173i)3-s + (0.0868 + 0.0316i)4-s − 0.952i·6-s + (−0.246 + 0.0897i)7-s + (−0.520 + 0.901i)8-s + (0.939 − 0.342i)9-s + (−1.06 − 0.890i)11-s + (−0.0909 − 0.0160i)12-s + (0.0679 + 0.385i)13-s + (−0.0434 − 0.246i)14-s + (−0.688 − 0.577i)16-s + (−0.470 − 0.814i)17-s + (0.165 + 0.938i)18-s + (−0.810 + 1.40i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 675 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0581 + 0.998i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 675 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.0581 + 0.998i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(=\) |
\(0\) |
| \(L(\frac12)\) |
\(=\) |
\(0\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 + (1.70 - 0.300i)T \) |
| 5 | \( 1 \) |
| good | 2 | \( 1 + (0.233 - 1.32i)T + (-1.87 - 0.684i)T^{2} \) |
| 7 | \( 1 + (0.652 - 0.237i)T + (5.36 - 4.49i)T^{2} \) |
| 11 | \( 1 + (3.52 + 2.95i)T + (1.91 + 10.8i)T^{2} \) |
| 13 | \( 1 + (-0.245 - 1.39i)T + (-12.2 + 4.44i)T^{2} \) |
| 17 | \( 1 + (1.93 + 3.35i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (3.53 - 6.11i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (3.59 + 1.30i)T + (17.6 + 14.7i)T^{2} \) |
| 29 | \( 1 + (-0.851 + 4.82i)T + (-27.2 - 9.91i)T^{2} \) |
| 31 | \( 1 + (-0.786 - 0.286i)T + (23.7 + 19.9i)T^{2} \) |
| 37 | \( 1 + (3.99 + 6.91i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (1.36 + 7.74i)T + (-38.5 + 14.0i)T^{2} \) |
| 43 | \( 1 + (-1.59 - 1.33i)T + (7.46 + 42.3i)T^{2} \) |
| 47 | \( 1 + (-6.46 + 2.35i)T + (36.0 - 30.2i)T^{2} \) |
| 53 | \( 1 + 3.05T + 53T^{2} \) |
| 59 | \( 1 + (6.82 - 5.72i)T + (10.2 - 58.1i)T^{2} \) |
| 61 | \( 1 + (-8.12 + 2.95i)T + (46.7 - 39.2i)T^{2} \) |
| 67 | \( 1 + (1.64 + 9.30i)T + (-62.9 + 22.9i)T^{2} \) |
| 71 | \( 1 + (-2.90 - 5.02i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (-2.70 + 4.68i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (2.27 - 12.9i)T + (-74.2 - 27.0i)T^{2} \) |
| 83 | \( 1 + (-0.197 + 1.11i)T + (-77.9 - 28.3i)T^{2} \) |
| 89 | \( 1 + (0.368 - 0.637i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-6.39 - 5.36i)T + (16.8 + 95.5i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.45295102832225454660073648605, −9.329894984036971959745290937872, −8.303742413722767247512539950792, −7.54704229212666484988879616125, −6.54527740650518425783630057157, −5.92213851398612515515146254610, −5.21281623832183930590167215293, −3.90998255341714336243277528115, −2.32926179299198265274773399911, 0,
1.64991004072917484349343518626, 2.77004168902742188106429922047, 4.22716565122897699184800277911, 5.20918963466175347616839827450, 6.39227331413677401512499908302, 6.96698570650909170308940011581, 8.109810862631563741813452070703, 9.407835912259115072033063833523, 10.32494002486971960104497934544