| L(s) = 1 | + (−1.93 − 1.62i)2-s + (1.11 + 1.32i)3-s + (0.766 + 4.34i)4-s − 4.38i·6-s + (0.532 − 3.01i)7-s + (3.05 − 5.28i)8-s + (−0.520 + 2.95i)9-s + (−5.29 + 1.92i)11-s + (−4.91 + 5.85i)12-s + (−3.23 + 2.71i)13-s + (−5.94 + 4.98i)14-s + (−6.23 + 2.27i)16-s + (−0.826 − 1.43i)17-s + (5.81 − 4.88i)18-s + (−0.120 + 0.208i)19-s + ⋯ |
| L(s) = 1 | + (−1.37 − 1.15i)2-s + (0.642 + 0.766i)3-s + (0.383 + 2.17i)4-s − 1.79i·6-s + (0.201 − 1.14i)7-s + (1.07 − 1.86i)8-s + (−0.173 + 0.984i)9-s + (−1.59 + 0.581i)11-s + (−1.41 + 1.68i)12-s + (−0.898 + 0.753i)13-s + (−1.58 + 1.33i)14-s + (−1.55 + 0.567i)16-s + (−0.200 − 0.347i)17-s + (1.37 − 1.15i)18-s + (−0.0276 + 0.0479i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 675 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.835 - 0.549i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 675 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.835 - 0.549i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(=\) |
\(0\) |
| \(L(\frac12)\) |
\(=\) |
\(0\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 + (-1.11 - 1.32i)T \) |
| 5 | \( 1 \) |
| good | 2 | \( 1 + (1.93 + 1.62i)T + (0.347 + 1.96i)T^{2} \) |
| 7 | \( 1 + (-0.532 + 3.01i)T + (-6.57 - 2.39i)T^{2} \) |
| 11 | \( 1 + (5.29 - 1.92i)T + (8.42 - 7.07i)T^{2} \) |
| 13 | \( 1 + (3.23 - 2.71i)T + (2.25 - 12.8i)T^{2} \) |
| 17 | \( 1 + (0.826 + 1.43i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (0.120 - 0.208i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (1.29 + 7.34i)T + (-21.6 + 7.86i)T^{2} \) |
| 29 | \( 1 + (5.90 + 4.95i)T + (5.03 + 28.5i)T^{2} \) |
| 31 | \( 1 + (-0.858 - 4.86i)T + (-29.1 + 10.6i)T^{2} \) |
| 37 | \( 1 + (1.24 + 2.15i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (0.109 - 0.0918i)T + (7.11 - 40.3i)T^{2} \) |
| 43 | \( 1 + (0.705 - 0.256i)T + (32.9 - 27.6i)T^{2} \) |
| 47 | \( 1 + (0.807 - 4.58i)T + (-44.1 - 16.0i)T^{2} \) |
| 53 | \( 1 + 12.1T + 53T^{2} \) |
| 59 | \( 1 + (-4.45 - 1.62i)T + (45.1 + 37.9i)T^{2} \) |
| 61 | \( 1 + (-2.41 + 13.6i)T + (-57.3 - 20.8i)T^{2} \) |
| 67 | \( 1 + (5.64 - 4.73i)T + (11.6 - 65.9i)T^{2} \) |
| 71 | \( 1 + (-2.45 - 4.24i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (0.113 - 0.196i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (7.53 + 6.32i)T + (13.7 + 77.7i)T^{2} \) |
| 83 | \( 1 + (-6.78 - 5.69i)T + (14.4 + 81.7i)T^{2} \) |
| 89 | \( 1 + (3.33 - 5.76i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (8.95 - 3.26i)T + (74.3 - 62.3i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.919870290748362556322280055151, −9.520238079609604258959980100337, −8.396772974160628898683157438704, −7.77370930172698959170044551603, −7.09259488986514202234756640025, −4.89984233320482196645716659628, −4.09442998754590062730488525548, −2.81845613612345684662714316181, −2.03496218524283038588272824679, 0,
1.84022528968094277789248127366, 2.96594940977840210745404229508, 5.43214694612245538633327461469, 5.72097676974394220050991152078, 6.99479171343914186905917411908, 7.84001153927305525207352732302, 8.139671094459287681237948961610, 9.039221418787992652726388355748, 9.706839310991265468453715504199