| L(s) = 1 | + (0.856 + 1.22i)2-s + (0.960 − 1.44i)3-s + (−0.0790 + 0.217i)4-s + (2.58 − 0.0591i)6-s + (4.36 + 2.03i)7-s + (2.55 − 0.683i)8-s + (−1.15 − 2.76i)9-s + (−2.25 + 2.68i)11-s + (0.237 + 0.322i)12-s + (−3.11 − 2.18i)13-s + (1.24 + 7.08i)14-s + (3.37 + 2.83i)16-s + (1.37 + 0.367i)17-s + (2.39 − 3.78i)18-s + (−1.30 − 0.750i)19-s + ⋯ |
| L(s) = 1 | + (0.605 + 0.865i)2-s + (0.554 − 0.832i)3-s + (−0.0395 + 0.108i)4-s + (1.05 − 0.0241i)6-s + (1.65 + 0.769i)7-s + (0.902 − 0.241i)8-s + (−0.384 − 0.923i)9-s + (−0.678 + 0.808i)11-s + (0.0684 + 0.0931i)12-s + (−0.864 − 0.605i)13-s + (0.333 + 1.89i)14-s + (0.844 + 0.708i)16-s + (0.332 + 0.0891i)17-s + (0.565 − 0.892i)18-s + (−0.298 − 0.172i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 675 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.970 - 0.239i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 675 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.970 - 0.239i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(2.86786 + 0.349136i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.86786 + 0.349136i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 + (-0.960 + 1.44i)T \) |
| 5 | \( 1 \) |
| good | 2 | \( 1 + (-0.856 - 1.22i)T + (-0.684 + 1.87i)T^{2} \) |
| 7 | \( 1 + (-4.36 - 2.03i)T + (4.49 + 5.36i)T^{2} \) |
| 11 | \( 1 + (2.25 - 2.68i)T + (-1.91 - 10.8i)T^{2} \) |
| 13 | \( 1 + (3.11 + 2.18i)T + (4.44 + 12.2i)T^{2} \) |
| 17 | \( 1 + (-1.37 - 0.367i)T + (14.7 + 8.5i)T^{2} \) |
| 19 | \( 1 + (1.30 + 0.750i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-0.633 - 1.35i)T + (-14.7 + 17.6i)T^{2} \) |
| 29 | \( 1 + (-0.168 + 0.957i)T + (-27.2 - 9.91i)T^{2} \) |
| 31 | \( 1 + (2.44 + 0.891i)T + (23.7 + 19.9i)T^{2} \) |
| 37 | \( 1 + (-1.79 + 6.69i)T + (-32.0 - 18.5i)T^{2} \) |
| 41 | \( 1 + (0.670 - 0.118i)T + (38.5 - 14.0i)T^{2} \) |
| 43 | \( 1 + (-0.200 + 0.0175i)T + (42.3 - 7.46i)T^{2} \) |
| 47 | \( 1 + (3.68 - 7.89i)T + (-30.2 - 36.0i)T^{2} \) |
| 53 | \( 1 + (-2.81 - 2.81i)T + 53iT^{2} \) |
| 59 | \( 1 + (5.69 - 4.77i)T + (10.2 - 58.1i)T^{2} \) |
| 61 | \( 1 + (1.08 - 0.396i)T + (46.7 - 39.2i)T^{2} \) |
| 67 | \( 1 + (-8.79 + 12.5i)T + (-22.9 - 62.9i)T^{2} \) |
| 71 | \( 1 + (11.1 - 6.42i)T + (35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (0.0920 + 0.343i)T + (-63.2 + 36.5i)T^{2} \) |
| 79 | \( 1 + (9.66 + 1.70i)T + (74.2 + 27.0i)T^{2} \) |
| 83 | \( 1 + (9.30 - 6.51i)T + (28.3 - 77.9i)T^{2} \) |
| 89 | \( 1 + (2.09 - 3.63i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (0.561 + 6.41i)T + (-95.5 + 16.8i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.60457465021951881528352933499, −9.482850791419633419807563227928, −8.358072925114392848667095354222, −7.65548959076416025619060359684, −7.27151254665243776089394115393, −5.92797919688775527211516062738, −5.24812165116164510976879423209, −4.39733659586054030609803456978, −2.57189900470369866196305385215, −1.61055823468542276977837376752,
1.74328030423122966732638982530, 2.83044015013291461450814909337, 3.92180561170235817507739053644, 4.70917791781455737108146808140, 5.28610705581378585643741655866, 7.25391638214641914214231966884, 8.017304479951785897953928513101, 8.626841450569103975034060839486, 10.03785748017199790572649734311, 10.56990916054608998268839616797