Properties

Label 8-672e4-1.1-c1e4-0-8
Degree $8$
Conductor $203928109056$
Sign $1$
Analytic cond. $829.059$
Root an. cond. $2.31645$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 6·3-s − 6·5-s + 2·7-s + 21·9-s − 6·11-s + 36·15-s − 12·21-s + 17·25-s − 54·27-s + 36·29-s + 30·31-s + 36·33-s − 12·35-s − 126·45-s + 7·49-s + 6·53-s + 36·55-s + 18·59-s + 42·63-s − 102·75-s − 12·77-s − 10·79-s + 108·81-s − 216·87-s − 180·93-s − 126·99-s + 12·101-s + ⋯
L(s)  = 1  − 3.46·3-s − 2.68·5-s + 0.755·7-s + 7·9-s − 1.80·11-s + 9.29·15-s − 2.61·21-s + 17/5·25-s − 10.3·27-s + 6.68·29-s + 5.38·31-s + 6.26·33-s − 2.02·35-s − 18.7·45-s + 49-s + 0.824·53-s + 4.85·55-s + 2.34·59-s + 5.29·63-s − 11.7·75-s − 1.36·77-s − 1.12·79-s + 12·81-s − 23.1·87-s − 18.6·93-s − 12.6·99-s + 1.19·101-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{20} \cdot 3^{4} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{20} \cdot 3^{4} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{20} \cdot 3^{4} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(829.059\)
Root analytic conductor: \(2.31645\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{20} \cdot 3^{4} \cdot 7^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(0.5925530762\)
\(L(\frac12)\) \(\approx\) \(0.5925530762\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2$ \( ( 1 + p T + p T^{2} )^{2} \)
7$C_2^2$ \( 1 - 2 T - 3 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
good5$C_2^2$$\times$$C_2^2$ \( ( 1 + 2 T^{2} + p^{2} T^{4} )( 1 + 6 T + 17 T^{2} + 6 p T^{3} + p^{2} T^{4} ) \)
11$C_2^2$$\times$$C_2^2$ \( ( 1 - 10 T^{2} + p^{2} T^{4} )( 1 + 6 T + 23 T^{2} + 6 p T^{3} + p^{2} T^{4} ) \)
13$C_2$ \( ( 1 + p T^{2} )^{4} \)
17$C_2^2$ \( ( 1 - p T^{2} + p^{2} T^{4} )^{2} \)
19$C_2^2$ \( ( 1 - p T^{2} + p^{2} T^{4} )^{2} \)
23$C_2^2$ \( ( 1 + p T^{2} + p^{2} T^{4} )^{2} \)
29$C_2^2$ \( ( 1 - 18 T + 137 T^{2} - 18 p T^{3} + p^{2} T^{4} )^{2} \)
31$C_2$$\times$$C_2^2$ \( ( 1 - 10 T + p T^{2} )^{2}( 1 - 10 T + 69 T^{2} - 10 p T^{3} + p^{2} T^{4} ) \)
37$C_2^2$ \( ( 1 + p T^{2} + p^{2} T^{4} )^{2} \)
41$C_2$ \( ( 1 + p T^{2} )^{4} \)
43$C_2$ \( ( 1 - p T^{2} )^{4} \)
47$C_2^2$ \( ( 1 - p T^{2} + p^{2} T^{4} )^{2} \)
53$C_2^2$$\times$$C_2^2$ \( ( 1 - 6 T + 65 T^{2} - 6 p T^{3} + p^{2} T^{4} )( 1 - 94 T^{2} + p^{2} T^{4} ) \)
59$C_2^2$$\times$$C_2^2$ \( ( 1 - 18 T + 167 T^{2} - 18 p T^{3} + p^{2} T^{4} )( 1 - 10 T^{2} + p^{2} T^{4} ) \)
61$C_2^2$ \( ( 1 - p T^{2} + p^{2} T^{4} )^{2} \)
67$C_2^2$ \( ( 1 + p T^{2} + p^{2} T^{4} )^{2} \)
71$C_2$ \( ( 1 - p T^{2} )^{4} \)
73$C_2^2$$\times$$C_2^2$ \( ( 1 - 14 T + 123 T^{2} - 14 p T^{3} + p^{2} T^{4} )( 1 + 14 T + 123 T^{2} + 14 p T^{3} + p^{2} T^{4} ) \)
79$C_2$$\times$$C_2^2$ \( ( 1 + 10 T + p T^{2} )^{2}( 1 - 10 T + 21 T^{2} - 10 p T^{3} + p^{2} T^{4} ) \)
83$C_2^2$$\times$$C_2^2$ \( ( 1 - 30 T + 383 T^{2} - 30 p T^{3} + p^{2} T^{4} )( 1 + 30 T + 383 T^{2} + 30 p T^{3} + p^{2} T^{4} ) \)
89$C_2^2$ \( ( 1 - p T^{2} + p^{2} T^{4} )^{2} \)
97$C_2^2$$\times$$C_2^2$ \( ( 1 - 2 T - 93 T^{2} - 2 p T^{3} + p^{2} T^{4} )( 1 + 2 T - 93 T^{2} + 2 p T^{3} + p^{2} T^{4} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.66585194998326968733599280914, −7.13256520472491480462266831997, −6.93886477268401285725720758426, −6.82506143933126905702958236818, −6.64211017116379267075769928475, −6.45089987373417682913018992291, −6.04744429158877863800721790269, −5.95013945145638840028639771196, −5.82976806317769829452527945115, −5.04525844219978013053040846727, −4.98481475203830793227457046205, −4.89186855058007423822224606451, −4.83449146990163910538163488310, −4.59610847647984613228342281586, −4.23327953835424269660308054665, −4.08274524128991227999016179734, −3.94396487484637953235084974846, −3.13159524331979621957906709923, −2.86650789734269046157605535248, −2.67877329282256188867752941831, −2.46617499730207489343222664795, −1.38505331364018386573061687479, −0.808786369348333386255620335300, −0.72558354174778886764003036679, −0.67348201595169164132173305672, 0.67348201595169164132173305672, 0.72558354174778886764003036679, 0.808786369348333386255620335300, 1.38505331364018386573061687479, 2.46617499730207489343222664795, 2.67877329282256188867752941831, 2.86650789734269046157605535248, 3.13159524331979621957906709923, 3.94396487484637953235084974846, 4.08274524128991227999016179734, 4.23327953835424269660308054665, 4.59610847647984613228342281586, 4.83449146990163910538163488310, 4.89186855058007423822224606451, 4.98481475203830793227457046205, 5.04525844219978013053040846727, 5.82976806317769829452527945115, 5.95013945145638840028639771196, 6.04744429158877863800721790269, 6.45089987373417682913018992291, 6.64211017116379267075769928475, 6.82506143933126905702958236818, 6.93886477268401285725720758426, 7.13256520472491480462266831997, 7.66585194998326968733599280914

Graph of the $Z$-function along the critical line