Properties

Label 2-668-167.9-c1-0-4
Degree $2$
Conductor $668$
Sign $-0.694 - 0.719i$
Analytic cond. $5.33400$
Root an. cond. $2.30954$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.383 + 2.88i)3-s + (1.71 + 0.758i)5-s + (0.166 − 0.358i)7-s + (−5.25 + 1.42i)9-s + (0.801 − 1.02i)11-s + (−2.57 + 5.03i)13-s + (−1.52 + 5.23i)15-s + (1.81 + 0.137i)17-s + (−1.54 + 2.32i)19-s + (1.09 + 0.342i)21-s + (4.00 + 1.59i)23-s + (−0.999 − 1.09i)25-s + (−2.75 − 6.55i)27-s + (−3.15 + 1.25i)29-s + (4.27 − 0.988i)31-s + ⋯
L(s)  = 1  + (0.221 + 1.66i)3-s + (0.766 + 0.339i)5-s + (0.0630 − 0.135i)7-s + (−1.75 + 0.475i)9-s + (0.241 − 0.309i)11-s + (−0.715 + 1.39i)13-s + (−0.393 + 1.35i)15-s + (0.439 + 0.0333i)17-s + (−0.354 + 0.533i)19-s + (0.239 + 0.0748i)21-s + (0.835 + 0.332i)23-s + (−0.199 − 0.219i)25-s + (−0.529 − 1.26i)27-s + (−0.585 + 0.232i)29-s + (0.767 − 0.177i)31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 668 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.694 - 0.719i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 668 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.694 - 0.719i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(668\)    =    \(2^{2} \cdot 167\)
Sign: $-0.694 - 0.719i$
Analytic conductor: \(5.33400\)
Root analytic conductor: \(2.30954\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{668} (9, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 668,\ (\ :1/2),\ -0.694 - 0.719i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.655643 + 1.54422i\)
\(L(\frac12)\) \(\approx\) \(0.655643 + 1.54422i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
167 \( 1 + (-12.7 + 2.16i)T \)
good3 \( 1 + (-0.383 - 2.88i)T + (-2.89 + 0.785i)T^{2} \)
5 \( 1 + (-1.71 - 0.758i)T + (3.36 + 3.69i)T^{2} \)
7 \( 1 + (-0.166 + 0.358i)T + (-4.51 - 5.35i)T^{2} \)
11 \( 1 + (-0.801 + 1.02i)T + (-2.67 - 10.6i)T^{2} \)
13 \( 1 + (2.57 - 5.03i)T + (-7.60 - 10.5i)T^{2} \)
17 \( 1 + (-1.81 - 0.137i)T + (16.8 + 2.56i)T^{2} \)
19 \( 1 + (1.54 - 2.32i)T + (-7.35 - 17.5i)T^{2} \)
23 \( 1 + (-4.00 - 1.59i)T + (16.7 + 15.7i)T^{2} \)
29 \( 1 + (3.15 - 1.25i)T + (21.0 - 19.9i)T^{2} \)
31 \( 1 + (-4.27 + 0.988i)T + (27.8 - 13.6i)T^{2} \)
37 \( 1 + (2.37 + 0.645i)T + (31.9 + 18.7i)T^{2} \)
41 \( 1 + (0.773 - 0.377i)T + (25.2 - 32.3i)T^{2} \)
43 \( 1 + (-0.670 + 7.06i)T + (-42.2 - 8.08i)T^{2} \)
47 \( 1 + (0.216 + 11.4i)T + (-46.9 + 1.77i)T^{2} \)
53 \( 1 + (-1.11 - 6.49i)T + (-49.9 + 17.7i)T^{2} \)
59 \( 1 + (-1.61 + 0.122i)T + (58.3 - 8.89i)T^{2} \)
61 \( 1 + (4.42 - 4.50i)T + (-1.15 - 60.9i)T^{2} \)
67 \( 1 + (1.47 - 0.650i)T + (45.0 - 49.5i)T^{2} \)
71 \( 1 + (-4.98 + 0.568i)T + (69.1 - 15.9i)T^{2} \)
73 \( 1 + (-6.50 + 4.87i)T + (20.4 - 70.0i)T^{2} \)
79 \( 1 + (-4.64 + 12.3i)T + (-59.4 - 52.0i)T^{2} \)
83 \( 1 + (4.25 - 5.90i)T + (-26.2 - 78.7i)T^{2} \)
89 \( 1 + (-1.27 - 4.35i)T + (-75.0 + 47.8i)T^{2} \)
97 \( 1 + (-11.7 - 2.71i)T + (87.1 + 42.5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.52753500233549996718760383503, −10.00281552237180316380041661904, −9.261005117439279993298626522851, −8.685969645352564361524885539039, −7.30108891079803358757449054203, −6.17457370199233637625292793410, −5.23301904521008017843541144401, −4.31873944924784372782029670682, −3.43666246120488227575244540968, −2.15770283934883453519833276334, 0.891501559639468665019803004335, 2.09629459505106474151065483217, 3.02959881244510076539535799671, 4.97202690273980091724696838599, 5.84197650940812983166761614662, 6.71256561641422525871110902438, 7.56871619550304131250242115397, 8.245741980764478440651364586129, 9.211301247117296301043898457952, 10.08331196622719221913127345870

Graph of the $Z$-function along the critical line