Properties

Label 2-668-167.9-c1-0-13
Degree $2$
Conductor $668$
Sign $-0.568 - 0.822i$
Analytic cond. $5.33400$
Root an. cond. $2.30954$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.426 − 3.20i)3-s + (−3.18 − 1.40i)5-s + (1.55 − 3.35i)7-s + (−7.16 + 1.94i)9-s + (−3.01 + 3.86i)11-s + (2.66 − 5.20i)13-s + (−3.14 + 10.7i)15-s + (3.01 + 0.228i)17-s + (0.174 − 0.263i)19-s + (−11.3 − 3.55i)21-s + (−1.18 − 0.470i)23-s + (4.78 + 5.25i)25-s + (5.53 + 13.1i)27-s + (7.69 − 3.05i)29-s + (−0.193 + 0.0446i)31-s + ⋯
L(s)  = 1  + (−0.246 − 1.84i)3-s + (−1.42 − 0.629i)5-s + (0.588 − 1.26i)7-s + (−2.38 + 0.648i)9-s + (−0.908 + 1.16i)11-s + (0.739 − 1.44i)13-s + (−0.812 + 2.78i)15-s + (0.731 + 0.0554i)17-s + (0.0401 − 0.0603i)19-s + (−2.48 − 0.776i)21-s + (−0.246 − 0.0981i)23-s + (0.956 + 1.05i)25-s + (1.06 + 2.53i)27-s + (1.42 − 0.568i)29-s + (−0.0347 + 0.00802i)31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 668 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.568 - 0.822i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 668 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.568 - 0.822i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(668\)    =    \(2^{2} \cdot 167\)
Sign: $-0.568 - 0.822i$
Analytic conductor: \(5.33400\)
Root analytic conductor: \(2.30954\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{668} (9, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 668,\ (\ :1/2),\ -0.568 - 0.822i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.322509 + 0.614641i\)
\(L(\frac12)\) \(\approx\) \(0.322509 + 0.614641i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
167 \( 1 + (-12.9 + 0.0594i)T \)
good3 \( 1 + (0.426 + 3.20i)T + (-2.89 + 0.785i)T^{2} \)
5 \( 1 + (3.18 + 1.40i)T + (3.36 + 3.69i)T^{2} \)
7 \( 1 + (-1.55 + 3.35i)T + (-4.51 - 5.35i)T^{2} \)
11 \( 1 + (3.01 - 3.86i)T + (-2.67 - 10.6i)T^{2} \)
13 \( 1 + (-2.66 + 5.20i)T + (-7.60 - 10.5i)T^{2} \)
17 \( 1 + (-3.01 - 0.228i)T + (16.8 + 2.56i)T^{2} \)
19 \( 1 + (-0.174 + 0.263i)T + (-7.35 - 17.5i)T^{2} \)
23 \( 1 + (1.18 + 0.470i)T + (16.7 + 15.7i)T^{2} \)
29 \( 1 + (-7.69 + 3.05i)T + (21.0 - 19.9i)T^{2} \)
31 \( 1 + (0.193 - 0.0446i)T + (27.8 - 13.6i)T^{2} \)
37 \( 1 + (-0.795 - 0.215i)T + (31.9 + 18.7i)T^{2} \)
41 \( 1 + (6.82 - 3.33i)T + (25.2 - 32.3i)T^{2} \)
43 \( 1 + (-0.651 + 6.86i)T + (-42.2 - 8.08i)T^{2} \)
47 \( 1 + (-0.195 - 10.3i)T + (-46.9 + 1.77i)T^{2} \)
53 \( 1 + (1.85 + 10.7i)T + (-49.9 + 17.7i)T^{2} \)
59 \( 1 + (4.91 - 0.372i)T + (58.3 - 8.89i)T^{2} \)
61 \( 1 + (6.52 - 6.64i)T + (-1.15 - 60.9i)T^{2} \)
67 \( 1 + (5.21 - 2.30i)T + (45.0 - 49.5i)T^{2} \)
71 \( 1 + (-1.11 + 0.127i)T + (69.1 - 15.9i)T^{2} \)
73 \( 1 + (-1.09 + 0.823i)T + (20.4 - 70.0i)T^{2} \)
79 \( 1 + (0.238 - 0.633i)T + (-59.4 - 52.0i)T^{2} \)
83 \( 1 + (-4.51 + 6.27i)T + (-26.2 - 78.7i)T^{2} \)
89 \( 1 + (0.299 + 1.02i)T + (-75.0 + 47.8i)T^{2} \)
97 \( 1 + (-5.86 - 1.35i)T + (87.1 + 42.5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.27988564948700562544341770440, −8.405930112908284300262987402706, −7.79504998175120994108424101525, −7.70257093649925272885301331348, −6.71156944096486109327235174804, −5.41324930054668116078088956727, −4.43580767726870371605241318270, −3.05099315753026434147051814273, −1.35868033571806827704076483895, −0.41869540507250074253359190247, 2.90455345806646813896433567875, 3.61481876109094052529431167276, 4.59345559914701184605927334092, 5.42642586188328808465438034792, 6.38179463523799912193816207611, 8.015841284824463125761705256602, 8.566547381146003439319587791870, 9.269825055622633304085419810058, 10.53421934936897680741946157678, 10.94674723833814590548690865011

Graph of the $Z$-function along the critical line