Properties

Label 2-668-167.21-c1-0-4
Degree $2$
Conductor $668$
Sign $0.999 + 0.00446i$
Analytic cond. $5.33400$
Root an. cond. $2.30954$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.69 − 0.259i)3-s + (−0.724 − 0.859i)5-s + (−2.54 + 3.52i)7-s + (−0.0410 − 0.0128i)9-s + (3.97 − 3.75i)11-s + (0.411 − 3.09i)13-s + (1.00 + 1.64i)15-s + (−3.90 + 5.87i)17-s + (4.29 + 0.993i)19-s + (5.23 − 5.33i)21-s + (1.11 + 5.29i)23-s + (0.633 − 3.68i)25-s + (4.70 + 2.29i)27-s + (0.0318 − 0.150i)29-s + (9.99 − 1.91i)31-s + ⋯
L(s)  = 1  + (−0.981 − 0.149i)3-s + (−0.323 − 0.384i)5-s + (−0.960 + 1.33i)7-s + (−0.0136 − 0.00427i)9-s + (1.19 − 1.13i)11-s + (0.114 − 0.857i)13-s + (0.260 + 0.425i)15-s + (−0.946 + 1.42i)17-s + (0.986 + 0.227i)19-s + (1.14 − 1.16i)21-s + (0.233 + 1.10i)23-s + (0.126 − 0.736i)25-s + (0.904 + 0.441i)27-s + (0.00592 − 0.0280i)29-s + (1.79 − 0.343i)31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 668 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.999 + 0.00446i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 668 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.999 + 0.00446i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(668\)    =    \(2^{2} \cdot 167\)
Sign: $0.999 + 0.00446i$
Analytic conductor: \(5.33400\)
Root analytic conductor: \(2.30954\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{668} (21, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 668,\ (\ :1/2),\ 0.999 + 0.00446i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.860086 - 0.00192105i\)
\(L(\frac12)\) \(\approx\) \(0.860086 - 0.00192105i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
167 \( 1 + (3.88 - 12.3i)T \)
good3 \( 1 + (1.69 + 0.259i)T + (2.86 + 0.894i)T^{2} \)
5 \( 1 + (0.724 + 0.859i)T + (-0.847 + 4.92i)T^{2} \)
7 \( 1 + (2.54 - 3.52i)T + (-2.21 - 6.64i)T^{2} \)
11 \( 1 + (-3.97 + 3.75i)T + (0.624 - 10.9i)T^{2} \)
13 \( 1 + (-0.411 + 3.09i)T + (-12.5 - 3.40i)T^{2} \)
17 \( 1 + (3.90 - 5.87i)T + (-6.57 - 15.6i)T^{2} \)
19 \( 1 + (-4.29 - 0.993i)T + (17.0 + 8.33i)T^{2} \)
23 \( 1 + (-1.11 - 5.29i)T + (-21.0 + 9.30i)T^{2} \)
29 \( 1 + (-0.0318 + 0.150i)T + (-26.5 - 11.7i)T^{2} \)
31 \( 1 + (-9.99 + 1.91i)T + (28.8 - 11.4i)T^{2} \)
37 \( 1 + (-4.21 + 1.31i)T + (30.4 - 21.0i)T^{2} \)
41 \( 1 + (-8.59 + 3.41i)T + (29.8 - 28.1i)T^{2} \)
43 \( 1 + (0.170 + 0.0604i)T + (33.4 + 27.0i)T^{2} \)
47 \( 1 + (-0.0288 + 0.114i)T + (-41.4 - 22.2i)T^{2} \)
53 \( 1 + (-0.180 - 0.135i)T + (14.8 + 50.8i)T^{2} \)
59 \( 1 + (-0.557 - 0.838i)T + (-22.8 + 54.4i)T^{2} \)
61 \( 1 + (0.548 + 0.702i)T + (-14.8 + 59.1i)T^{2} \)
67 \( 1 + (-1.41 + 1.67i)T + (-11.3 - 66.0i)T^{2} \)
71 \( 1 + (-0.759 - 8.00i)T + (-69.7 + 13.3i)T^{2} \)
73 \( 1 + (0.447 - 0.798i)T + (-38.0 - 62.2i)T^{2} \)
79 \( 1 + (-5.29 - 0.200i)T + (78.7 + 5.97i)T^{2} \)
83 \( 1 + (-2.99 + 0.813i)T + (71.6 - 41.9i)T^{2} \)
89 \( 1 + (6.10 - 9.99i)T + (-40.5 - 79.2i)T^{2} \)
97 \( 1 + (-17.0 - 3.26i)T + (90.1 + 35.8i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.71552935461115042939579087527, −9.540583849113283407453583368114, −8.803703562209709193999698940884, −8.098003260903129094156891252156, −6.47167371298347054350636620124, −6.06893194607726149798134555038, −5.41164044317854331073755597746, −3.93100451711688649737424477525, −2.84461421189305055348860472901, −0.858815155172977974440562923396, 0.810757873760280102566277435758, 2.89426652202148348740525604449, 4.24721495391365936296981812285, 4.75474312452648907426907265386, 6.46433731231916750524535752014, 6.73110005672115140465202487486, 7.48937139967439088706312367855, 9.126720598288448826260015211149, 9.726461100450548060243034445494, 10.59081259453827155749431702757

Graph of the $Z$-function along the critical line