| L(s) = 1 | + (0.5 + 0.866i)2-s + (1.08 + 1.34i)3-s + (−0.499 + 0.866i)4-s + (0.563 − 0.976i)5-s + (−0.622 + 1.61i)6-s − 4.63·7-s − 0.999·8-s + (−0.630 + 2.93i)9-s + 1.12·10-s + (−0.811 + 1.40i)11-s + (−1.71 + 0.268i)12-s + (−2.49 + 4.32i)13-s + (−2.31 − 4.01i)14-s + (1.92 − 0.303i)15-s + (−0.5 − 0.866i)16-s + (−0.427 + 0.740i)17-s + ⋯ |
| L(s) = 1 | + (0.353 + 0.612i)2-s + (0.628 + 0.777i)3-s + (−0.249 + 0.433i)4-s + (0.252 − 0.436i)5-s + (−0.254 + 0.659i)6-s − 1.75·7-s − 0.353·8-s + (−0.210 + 0.977i)9-s + 0.356·10-s + (−0.244 + 0.423i)11-s + (−0.493 + 0.0776i)12-s + (−0.691 + 1.19i)13-s + (−0.619 − 1.07i)14-s + (0.498 − 0.0782i)15-s + (−0.125 − 0.216i)16-s + (−0.103 + 0.179i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 666 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.995 - 0.0946i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 666 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.995 - 0.0946i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.0624069 + 1.31592i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.0624069 + 1.31592i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (-0.5 - 0.866i)T \) |
| 3 | \( 1 + (-1.08 - 1.34i)T \) |
| 37 | \( 1 + (-3.76 - 4.77i)T \) |
| good | 5 | \( 1 + (-0.563 + 0.976i)T + (-2.5 - 4.33i)T^{2} \) |
| 7 | \( 1 + 4.63T + 7T^{2} \) |
| 11 | \( 1 + (0.811 - 1.40i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (2.49 - 4.32i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (0.427 - 0.740i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (3.44 + 5.96i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-3.77 - 6.54i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-0.738 + 1.27i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-3.94 - 6.82i)T + (-15.5 + 26.8i)T^{2} \) |
| 41 | \( 1 + (1.59 - 2.76i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-6.01 + 10.4i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-1.61 + 2.80i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-5.44 + 9.43i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + 13.1T + 59T^{2} \) |
| 61 | \( 1 - 6.50T + 61T^{2} \) |
| 67 | \( 1 + (-2.32 + 4.02i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-0.0533 - 0.0924i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 - 3.25T + 73T^{2} \) |
| 79 | \( 1 + 5.98T + 79T^{2} \) |
| 83 | \( 1 + (-3.53 - 6.13i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (6.97 - 12.0i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-3.23 + 5.59i)T + (-48.5 - 84.0i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.70876899030054815037778114257, −9.627048510020486402398484005323, −9.329822809440574477437726363032, −8.577039242713152751221139397520, −7.16092603081293901710836016500, −6.67072567601969902932824138612, −5.33674540600701125392351639689, −4.55251485664029215194552483858, −3.50069254003427112668155099208, −2.49718133861076231142368921641,
0.54775965698604951666192657059, 2.66720750232814214706815387868, 2.86764257171028623149354128629, 4.13725473806122659923349539278, 5.94107448266507921031908666136, 6.30156705363852686606018398246, 7.41124019058084047786895538390, 8.425980346147160316518505731226, 9.415083440450456462603400785675, 10.14064842770921404821300090928