| L(s) = 1 | + (0.5 − 0.866i)2-s + (−0.398 − 1.68i)3-s + (−0.499 − 0.866i)4-s + (−0.265 − 0.459i)5-s + (−1.65 − 0.497i)6-s + (−1.21 + 2.10i)7-s − 0.999·8-s + (−2.68 + 1.34i)9-s − 0.530·10-s + (−1.62 + 2.81i)11-s + (−1.26 + 1.18i)12-s + (−0.625 − 1.08i)13-s + (1.21 + 2.10i)14-s + (−0.668 + 0.630i)15-s + (−0.5 + 0.866i)16-s − 4.30·17-s + ⋯ |
| L(s) = 1 | + (0.353 − 0.612i)2-s + (−0.230 − 0.973i)3-s + (−0.249 − 0.433i)4-s + (−0.118 − 0.205i)5-s + (−0.677 − 0.203i)6-s + (−0.458 + 0.793i)7-s − 0.353·8-s + (−0.894 + 0.448i)9-s − 0.167·10-s + (−0.490 + 0.849i)11-s + (−0.363 + 0.342i)12-s + (−0.173 − 0.300i)13-s + (0.324 + 0.561i)14-s + (−0.172 + 0.162i)15-s + (−0.125 + 0.216i)16-s − 1.04·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 666 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.285 - 0.958i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 666 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.285 - 0.958i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.0866004 + 0.116218i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.0866004 + 0.116218i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (-0.5 + 0.866i)T \) |
| 3 | \( 1 + (0.398 + 1.68i)T \) |
| 37 | \( 1 + T \) |
| good | 5 | \( 1 + (0.265 + 0.459i)T + (-2.5 + 4.33i)T^{2} \) |
| 7 | \( 1 + (1.21 - 2.10i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (1.62 - 2.81i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (0.625 + 1.08i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + 4.30T + 17T^{2} \) |
| 19 | \( 1 + 6.96T + 19T^{2} \) |
| 23 | \( 1 + (2.88 + 5.00i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (1.31 - 2.27i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-5.11 - 8.86i)T + (-15.5 + 26.8i)T^{2} \) |
| 41 | \( 1 + (3.80 + 6.58i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-3.07 + 5.31i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-4.89 + 8.48i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + 6.65T + 53T^{2} \) |
| 59 | \( 1 + (-1.92 - 3.32i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-5.83 + 10.0i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-0.424 - 0.736i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 7.49T + 71T^{2} \) |
| 73 | \( 1 + 15.3T + 73T^{2} \) |
| 79 | \( 1 + (6.50 - 11.2i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-0.220 + 0.382i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 - 1.81T + 89T^{2} \) |
| 97 | \( 1 + (3.23 - 5.60i)T + (-48.5 - 84.0i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.26139931358078983043186484434, −8.771441287418223125698563197519, −8.472441472204626049666511561069, −7.00044358832037475447432284258, −6.36031427998455758034670845571, −5.29687691158105837655922114386, −4.35944369857014669272702401871, −2.69283261074849895380162808000, −2.03523335313844655746188314628, −0.06512307515541410523907962725,
2.83081837904375735867741914021, 3.97182405197889010659440978290, 4.54618168062127372985193945364, 5.85921445788580427663535748939, 6.43961871308282064478872807530, 7.58928450520148934810693592273, 8.530847481981040897150047800492, 9.402663214930067688783219614489, 10.28097737411190395136922735947, 11.08327977496313370339176178427