| L(s) = 1 | + (0.5 − 0.866i)2-s + (1.5 + 0.866i)3-s + (−0.499 − 0.866i)4-s + (2 + 3.46i)5-s + (1.5 − 0.866i)6-s − 0.999·8-s + (1.5 + 2.59i)9-s + 3.99·10-s + (0.5 − 0.866i)11-s − 1.73i·12-s + (−3 − 5.19i)13-s + 6.92i·15-s + (−0.5 + 0.866i)16-s + 3·17-s + 3·18-s − 19-s + ⋯ |
| L(s) = 1 | + (0.353 − 0.612i)2-s + (0.866 + 0.499i)3-s + (−0.249 − 0.433i)4-s + (0.894 + 1.54i)5-s + (0.612 − 0.353i)6-s − 0.353·8-s + (0.5 + 0.866i)9-s + 1.26·10-s + (0.150 − 0.261i)11-s − 0.499i·12-s + (−0.832 − 1.44i)13-s + 1.78i·15-s + (−0.125 + 0.216i)16-s + 0.727·17-s + 0.707·18-s − 0.229·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 666 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.939 - 0.342i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 666 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.939 - 0.342i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(2.59343 + 0.457291i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.59343 + 0.457291i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (-0.5 + 0.866i)T \) |
| 3 | \( 1 + (-1.5 - 0.866i)T \) |
| 37 | \( 1 - T \) |
| good | 5 | \( 1 + (-2 - 3.46i)T + (-2.5 + 4.33i)T^{2} \) |
| 7 | \( 1 + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (-0.5 + 0.866i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (3 + 5.19i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 - 3T + 17T^{2} \) |
| 19 | \( 1 + T + 19T^{2} \) |
| 23 | \( 1 + (-3 - 5.19i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-1 - 1.73i)T + (-15.5 + 26.8i)T^{2} \) |
| 41 | \( 1 + (4.5 + 7.79i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-2.5 + 4.33i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-2 + 3.46i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + 12T + 53T^{2} \) |
| 59 | \( 1 + (5.5 + 9.52i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-1 + 1.73i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (7.5 + 12.9i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 12T + 71T^{2} \) |
| 73 | \( 1 + 5T + 73T^{2} \) |
| 79 | \( 1 + (-3 + 5.19i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-2 + 3.46i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + 10T + 89T^{2} \) |
| 97 | \( 1 + (1.5 - 2.59i)T + (-48.5 - 84.0i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.55082951457741611957993130786, −9.873016975895661991076048275966, −9.252241059919096688362242825717, −7.908991198085706424095052511726, −7.12217485441404289734932781738, −5.87841103485098055376736677230, −5.05572049751112669092680726517, −3.42131205082774140573758334602, −3.04116001306905430402924089523, −1.97478809787743220548822708940,
1.35402803091721531811731018178, 2.54565964853089336066968235778, 4.24925680893428164946973447359, 4.85724181469975152333303464075, 6.07381987054016463485060705327, 6.89855801716974714524573411143, 7.933934640929962433674461122829, 8.743354150476671103794894259464, 9.337688272681026416270595396808, 9.943595821880462257716174727871