Properties

Label 4-666e2-1.1-c1e2-0-3
Degree $4$
Conductor $443556$
Sign $1$
Analytic cond. $28.2815$
Root an. cond. $2.30608$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 3·4-s − 5-s − 2·7-s − 4·8-s + 2·10-s + 5·11-s + 13-s + 4·14-s + 5·16-s − 3·20-s − 10·22-s + 23-s + 2·25-s − 2·26-s − 6·28-s + 3·29-s + 17·31-s − 6·32-s + 2·35-s − 2·37-s + 4·40-s − 17·41-s − 6·43-s + 15·44-s − 2·46-s − 2·47-s + ⋯
L(s)  = 1  − 1.41·2-s + 3/2·4-s − 0.447·5-s − 0.755·7-s − 1.41·8-s + 0.632·10-s + 1.50·11-s + 0.277·13-s + 1.06·14-s + 5/4·16-s − 0.670·20-s − 2.13·22-s + 0.208·23-s + 2/5·25-s − 0.392·26-s − 1.13·28-s + 0.557·29-s + 3.05·31-s − 1.06·32-s + 0.338·35-s − 0.328·37-s + 0.632·40-s − 2.65·41-s − 0.914·43-s + 2.26·44-s − 0.294·46-s − 0.291·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 443556 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 443556 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(443556\)    =    \(2^{2} \cdot 3^{4} \cdot 37^{2}\)
Sign: $1$
Analytic conductor: \(28.2815\)
Root analytic conductor: \(2.30608\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 443556,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.8743695126\)
\(L(\frac12)\) \(\approx\) \(0.8743695126\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 + T )^{2} \)
3 \( 1 \)
37$C_1$ \( ( 1 + T )^{2} \)
good5$D_{4}$ \( 1 + T - T^{2} + p T^{3} + p^{2} T^{4} \)
7$D_{4}$ \( 1 + 2 T + 10 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
11$D_{4}$ \( 1 - 5 T + 27 T^{2} - 5 p T^{3} + p^{2} T^{4} \)
13$D_{4}$ \( 1 - T + 15 T^{2} - p T^{3} + p^{2} T^{4} \)
17$C_2^2$ \( 1 + 14 T^{2} + p^{2} T^{4} \)
19$C_2^2$ \( 1 + 18 T^{2} + p^{2} T^{4} \)
23$D_{4}$ \( 1 - T + 35 T^{2} - p T^{3} + p^{2} T^{4} \)
29$C_4$ \( 1 - 3 T - T^{2} - 3 p T^{3} + p^{2} T^{4} \)
31$D_{4}$ \( 1 - 17 T + 133 T^{2} - 17 p T^{3} + p^{2} T^{4} \)
41$D_{4}$ \( 1 + 17 T + 153 T^{2} + 17 p T^{3} + p^{2} T^{4} \)
43$D_{4}$ \( 1 + 6 T + 90 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
47$D_{4}$ \( 1 + 2 T + 90 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
53$D_{4}$ \( 1 - 8 T + 102 T^{2} - 8 p T^{3} + p^{2} T^{4} \)
59$D_{4}$ \( 1 - 14 T + 162 T^{2} - 14 p T^{3} + p^{2} T^{4} \)
61$D_{4}$ \( 1 - 19 T + 211 T^{2} - 19 p T^{3} + p^{2} T^{4} \)
67$D_{4}$ \( 1 + 9 T + 123 T^{2} + 9 p T^{3} + p^{2} T^{4} \)
71$D_{4}$ \( 1 - 12 T + 98 T^{2} - 12 p T^{3} + p^{2} T^{4} \)
73$D_{4}$ \( 1 - 3 T + 117 T^{2} - 3 p T^{3} + p^{2} T^{4} \)
79$D_{4}$ \( 1 - 3 T + 59 T^{2} - 3 p T^{3} + p^{2} T^{4} \)
83$D_{4}$ \( 1 - 20 T + 246 T^{2} - 20 p T^{3} + p^{2} T^{4} \)
89$C_4$ \( 1 - 12 T + 194 T^{2} - 12 p T^{3} + p^{2} T^{4} \)
97$D_{4}$ \( 1 - 8 T + 190 T^{2} - 8 p T^{3} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.46362769212668555174233177355, −10.16084379052051402647932147893, −9.879949479711905537275271281386, −9.535346551387154414694290683943, −8.867376536083673390760119910492, −8.638109233435591597672701580597, −8.234962024644255586792061168563, −7.956053490775710793649126002140, −7.14044343528659801100496828380, −6.66905150130503432360910126425, −6.43945258485775047281224833849, −6.41681475910582889607095725592, −5.21403278492601116080479391320, −4.94521540255671770583730319194, −3.89633259338865014135668912905, −3.65445389378952927062629006311, −2.96807548835528318907132220424, −2.29679447527135897016348658064, −1.35434847827472147039815903809, −0.70293052423832835508495182842, 0.70293052423832835508495182842, 1.35434847827472147039815903809, 2.29679447527135897016348658064, 2.96807548835528318907132220424, 3.65445389378952927062629006311, 3.89633259338865014135668912905, 4.94521540255671770583730319194, 5.21403278492601116080479391320, 6.41681475910582889607095725592, 6.43945258485775047281224833849, 6.66905150130503432360910126425, 7.14044343528659801100496828380, 7.956053490775710793649126002140, 8.234962024644255586792061168563, 8.638109233435591597672701580597, 8.867376536083673390760119910492, 9.535346551387154414694290683943, 9.879949479711905537275271281386, 10.16084379052051402647932147893, 10.46362769212668555174233177355

Graph of the $Z$-function along the critical line