Properties

Label 8-66e4-1.1-c1e4-0-0
Degree $8$
Conductor $18974736$
Sign $1$
Analytic cond. $0.0771408$
Root an. cond. $0.725956$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3-s − 6-s − 2·7-s − 4·11-s + 4·13-s − 2·14-s − 4·17-s + 14·19-s + 2·21-s − 4·22-s + 4·23-s − 5·25-s + 4·26-s − 11·29-s + 7·31-s − 32-s + 4·33-s − 4·34-s + 20·37-s + 14·38-s − 4·39-s + 14·41-s + 2·42-s − 28·43-s + 4·46-s − 4·47-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s − 0.408·6-s − 0.755·7-s − 1.20·11-s + 1.10·13-s − 0.534·14-s − 0.970·17-s + 3.21·19-s + 0.436·21-s − 0.852·22-s + 0.834·23-s − 25-s + 0.784·26-s − 2.04·29-s + 1.25·31-s − 0.176·32-s + 0.696·33-s − 0.685·34-s + 3.28·37-s + 2.27·38-s − 0.640·39-s + 2.18·41-s + 0.308·42-s − 4.26·43-s + 0.589·46-s − 0.583·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 18974736 ^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 18974736 ^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(18974736\)    =    \(2^{4} \cdot 3^{4} \cdot 11^{4}\)
Sign: $1$
Analytic conductor: \(0.0771408\)
Root analytic conductor: \(0.725956\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 18974736,\ (\ :1/2, 1/2, 1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.6900769363\)
\(L(\frac12)\) \(\approx\) \(0.6900769363\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_4$ \( 1 - T + T^{2} - T^{3} + T^{4} \)
3$C_4$ \( 1 + T + T^{2} + T^{3} + T^{4} \)
11$C_4$ \( 1 + 4 T + 6 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
good5$C_4$$\times$$C_4$ \( ( 1 - p T + 3 p T^{2} - p^{2} T^{3} + p^{2} T^{4} )( 1 + p T + 3 p T^{2} + p^{2} T^{3} + p^{2} T^{4} ) \)
7$C_2^2:C_4$ \( 1 + 2 T - 3 T^{2} + 10 T^{3} + 71 T^{4} + 10 p T^{5} - 3 p^{2} T^{6} + 2 p^{3} T^{7} + p^{4} T^{8} \)
13$C_2^2:C_4$ \( 1 - 4 T + 3 T^{2} - 50 T^{3} + 341 T^{4} - 50 p T^{5} + 3 p^{2} T^{6} - 4 p^{3} T^{7} + p^{4} T^{8} \)
17$C_4\times C_2$ \( 1 + 4 T - T^{2} - 72 T^{3} - 271 T^{4} - 72 p T^{5} - p^{2} T^{6} + 4 p^{3} T^{7} + p^{4} T^{8} \)
19$C_4\times C_2$ \( 1 - 14 T + 117 T^{2} - 742 T^{3} + 3665 T^{4} - 742 p T^{5} + 117 p^{2} T^{6} - 14 p^{3} T^{7} + p^{4} T^{8} \)
23$C_2^2$ \( ( 1 - 2 T + 2 T^{2} - 2 p T^{3} + p^{2} T^{4} )^{2} \)
29$C_2^2:C_4$ \( 1 + 11 T + 17 T^{2} - 207 T^{3} - 1420 T^{4} - 207 p T^{5} + 17 p^{2} T^{6} + 11 p^{3} T^{7} + p^{4} T^{8} \)
31$C_2^2:C_4$ \( 1 - 7 T - 7 T^{2} + 241 T^{3} - 1220 T^{4} + 241 p T^{5} - 7 p^{2} T^{6} - 7 p^{3} T^{7} + p^{4} T^{8} \)
37$C_4\times C_2$ \( 1 - 20 T + 203 T^{2} - 1600 T^{3} + 10729 T^{4} - 1600 p T^{5} + 203 p^{2} T^{6} - 20 p^{3} T^{7} + p^{4} T^{8} \)
41$C_2^2:C_4$ \( 1 - 14 T + 95 T^{2} - 786 T^{3} + 6569 T^{4} - 786 p T^{5} + 95 p^{2} T^{6} - 14 p^{3} T^{7} + p^{4} T^{8} \)
43$D_{4}$ \( ( 1 + 14 T + 130 T^{2} + 14 p T^{3} + p^{2} T^{4} )^{2} \)
47$C_4\times C_2$ \( 1 + 4 T - 31 T^{2} - 312 T^{3} + 209 T^{4} - 312 p T^{5} - 31 p^{2} T^{6} + 4 p^{3} T^{7} + p^{4} T^{8} \)
53$C_2^2:C_4$ \( 1 + 5 T - 43 T^{2} - 5 p T^{3} + 1244 T^{4} - 5 p^{2} T^{5} - 43 p^{2} T^{6} + 5 p^{3} T^{7} + p^{4} T^{8} \)
59$C_2^2:C_4$ \( 1 + 20 T + 131 T^{2} + 530 T^{3} + 3851 T^{4} + 530 p T^{5} + 131 p^{2} T^{6} + 20 p^{3} T^{7} + p^{4} T^{8} \)
61$C_2^2:C_4$ \( 1 + 18 T + 83 T^{2} + 66 T^{3} + 625 T^{4} + 66 p T^{5} + 83 p^{2} T^{6} + 18 p^{3} T^{7} + p^{4} T^{8} \)
67$D_{4}$ \( ( 1 + 8 T + 70 T^{2} + 8 p T^{3} + p^{2} T^{4} )^{2} \)
71$C_4\times C_2$ \( 1 + 6 T - 35 T^{2} - 636 T^{3} - 1331 T^{4} - 636 p T^{5} - 35 p^{2} T^{6} + 6 p^{3} T^{7} + p^{4} T^{8} \)
73$C_2^2:C_4$ \( 1 + 27 T + 251 T^{2} + 801 T^{3} + 64 T^{4} + 801 p T^{5} + 251 p^{2} T^{6} + 27 p^{3} T^{7} + p^{4} T^{8} \)
79$C_2^2:C_4$ \( 1 + 4 T - 33 T^{2} + 542 T^{3} + 8375 T^{4} + 542 p T^{5} - 33 p^{2} T^{6} + 4 p^{3} T^{7} + p^{4} T^{8} \)
83$C_2^2:C_4$ \( 1 - 2 T - 79 T^{2} - 86 T^{3} + 7139 T^{4} - 86 p T^{5} - 79 p^{2} T^{6} - 2 p^{3} T^{7} + p^{4} T^{8} \)
89$D_{4}$ \( ( 1 - 18 T + 254 T^{2} - 18 p T^{3} + p^{2} T^{4} )^{2} \)
97$C_2^2:C_4$ \( 1 - 6 T - 21 T^{2} + 868 T^{3} - 2331 T^{4} + 868 p T^{5} - 21 p^{2} T^{6} - 6 p^{3} T^{7} + p^{4} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.44025664610118655710534164403, −10.67210631574856062910803079323, −10.51637924901720960212812651175, −10.45192267802970947441363941606, −9.772810943573574442982284061122, −9.613273862287142170813815204638, −9.184925978065639041320695420887, −9.182679536335233007389406803725, −8.812175321490319172773735827305, −7.893444511474028259686950431622, −7.889303538009648557232702296842, −7.63301795319623868224634281725, −7.45594156774574983783933490283, −6.69713310380024019143097439822, −6.50644209949263145065873082498, −5.85928561362918358084659636449, −5.73535053188573036573677677582, −5.72883355505669511349423103519, −4.84907279068312103575574970508, −4.57781489569339494074139422872, −4.41395228321192014377078444129, −3.44652457399143454084560545978, −3.07234390707444695897808124003, −2.97038778325749746773995845452, −1.60160929682408434522196986924, 1.60160929682408434522196986924, 2.97038778325749746773995845452, 3.07234390707444695897808124003, 3.44652457399143454084560545978, 4.41395228321192014377078444129, 4.57781489569339494074139422872, 4.84907279068312103575574970508, 5.72883355505669511349423103519, 5.73535053188573036573677677582, 5.85928561362918358084659636449, 6.50644209949263145065873082498, 6.69713310380024019143097439822, 7.45594156774574983783933490283, 7.63301795319623868224634281725, 7.889303538009648557232702296842, 7.893444511474028259686950431622, 8.812175321490319172773735827305, 9.182679536335233007389406803725, 9.184925978065639041320695420887, 9.613273862287142170813815204638, 9.772810943573574442982284061122, 10.45192267802970947441363941606, 10.51637924901720960212812651175, 10.67210631574856062910803079323, 11.44025664610118655710534164403

Graph of the $Z$-function along the critical line