Properties

Label 8-65e4-1.1-c1e4-0-0
Degree $8$
Conductor $17850625$
Sign $1$
Analytic cond. $0.0725707$
Root an. cond. $0.720435$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 2·3-s + 4-s − 4·5-s − 2·6-s + 2·7-s − 2·8-s + 7·9-s − 4·10-s + 4·11-s − 2·12-s + 2·14-s + 8·15-s − 8·17-s + 7·18-s + 4·19-s − 4·20-s − 4·21-s + 4·22-s + 6·23-s + 4·24-s + 10·25-s − 22·27-s + 2·28-s − 2·29-s + 8·30-s − 16·31-s + ⋯
L(s)  = 1  + 0.707·2-s − 1.15·3-s + 1/2·4-s − 1.78·5-s − 0.816·6-s + 0.755·7-s − 0.707·8-s + 7/3·9-s − 1.26·10-s + 1.20·11-s − 0.577·12-s + 0.534·14-s + 2.06·15-s − 1.94·17-s + 1.64·18-s + 0.917·19-s − 0.894·20-s − 0.872·21-s + 0.852·22-s + 1.25·23-s + 0.816·24-s + 2·25-s − 4.23·27-s + 0.377·28-s − 0.371·29-s + 1.46·30-s − 2.87·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 17850625 ^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 17850625 ^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(17850625\)    =    \(5^{4} \cdot 13^{4}\)
Sign: $1$
Analytic conductor: \(0.0725707\)
Root analytic conductor: \(0.720435\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 17850625,\ (\ :1/2, 1/2, 1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.5884263140\)
\(L(\frac12)\) \(\approx\) \(0.5884263140\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad5$C_1$ \( ( 1 + T )^{4} \)
13$C_2$ \( ( 1 - p T^{2} )^{2} \)
good2$D_4\times C_2$ \( 1 - T + 3 T^{3} - 5 T^{4} + 3 p T^{5} - p^{3} T^{7} + p^{4} T^{8} \)
3$C_2^2$ \( ( 1 + T - 2 T^{2} + p T^{3} + p^{2} T^{4} )^{2} \)
7$C_2$ \( ( 1 - 5 T + p T^{2} )^{2}( 1 + 4 T + p T^{2} )^{2} \)
11$D_4\times C_2$ \( 1 - 4 T + 3 T^{2} + 36 T^{3} - 128 T^{4} + 36 p T^{5} + 3 p^{2} T^{6} - 4 p^{3} T^{7} + p^{4} T^{8} \)
17$D_4\times C_2$ \( 1 + 8 T + 27 T^{2} + 24 T^{3} - 8 T^{4} + 24 p T^{5} + 27 p^{2} T^{6} + 8 p^{3} T^{7} + p^{4} T^{8} \)
19$D_4\times C_2$ \( 1 - 4 T - 13 T^{2} + 36 T^{3} + 176 T^{4} + 36 p T^{5} - 13 p^{2} T^{6} - 4 p^{3} T^{7} + p^{4} T^{8} \)
23$C_2^2$ \( ( 1 - 3 T - 14 T^{2} - 3 p T^{3} + p^{2} T^{4} )^{2} \)
29$D_4\times C_2$ \( 1 + 2 T - 3 T^{2} - 102 T^{3} - 908 T^{4} - 102 p T^{5} - 3 p^{2} T^{6} + 2 p^{3} T^{7} + p^{4} T^{8} \)
31$C_2$ \( ( 1 + 4 T + p T^{2} )^{4} \)
37$C_2^3$ \( 1 - 61 T^{2} + 2352 T^{4} - 61 p^{2} T^{6} + p^{4} T^{8} \)
41$C_2^2$ \( ( 1 + 3 T - 32 T^{2} + 3 p T^{3} + p^{2} T^{4} )^{2} \)
43$D_4\times C_2$ \( 1 - 6 T - 7 T^{2} + 6 p T^{3} - 36 p T^{4} + 6 p^{2} T^{5} - 7 p^{2} T^{6} - 6 p^{3} T^{7} + p^{4} T^{8} \)
47$D_{4}$ \( ( 1 - 4 T + 46 T^{2} - 4 p T^{3} + p^{2} T^{4} )^{2} \)
53$D_{4}$ \( ( 1 - 8 T + 70 T^{2} - 8 p T^{3} + p^{2} T^{4} )^{2} \)
59$C_2^3$ \( 1 - T^{2} - 3480 T^{4} - p^{2} T^{6} + p^{4} T^{8} \)
61$C_2$ \( ( 1 - 14 T + p T^{2} )^{2}( 1 + 13 T + p T^{2} )^{2} \)
67$C_2^2$ \( ( 1 - 7 T - 18 T^{2} - 7 p T^{3} + p^{2} T^{4} )^{2} \)
71$D_4\times C_2$ \( 1 - 12 T + 83 T^{2} + 972 T^{3} - 11544 T^{4} + 972 p T^{5} + 83 p^{2} T^{6} - 12 p^{3} T^{7} + p^{4} T^{8} \)
73$D_{4}$ \( ( 1 + 16 T + 158 T^{2} + 16 p T^{3} + p^{2} T^{4} )^{2} \)
79$D_{4}$ \( ( 1 + 4 T + 110 T^{2} + 4 p T^{3} + p^{2} T^{4} )^{2} \)
83$D_{4}$ \( ( 1 + 4 T + 118 T^{2} + 4 p T^{3} + p^{2} T^{4} )^{2} \)
89$D_4\times C_2$ \( 1 + 2 T - 123 T^{2} - 102 T^{3} + 7852 T^{4} - 102 p T^{5} - 123 p^{2} T^{6} + 2 p^{3} T^{7} + p^{4} T^{8} \)
97$D_4\times C_2$ \( 1 - 24 T + 251 T^{2} - 3144 T^{3} + 40344 T^{4} - 3144 p T^{5} + 251 p^{2} T^{6} - 24 p^{3} T^{7} + p^{4} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.38273753470751407937937588343, −10.87905492944601137255752967700, −10.83936797101497974980434560023, −10.42582258176282826104586338613, −10.09638830681397758136885600406, −9.520704082235653297044018337427, −9.078392531186914942929991916857, −9.036532808057901851766936685973, −8.850316335612125910152289476152, −8.308002667946383299678719688113, −7.52540775289160939623334917265, −7.46498094166597590559225299668, −7.36207989365010637180779909424, −6.87919402287606897317926620573, −6.78905538776817669651575731269, −6.18456918179466007260633386603, −5.57902814091702612338913124920, −5.39734069479177377929684220852, −5.18213621752467731457333050423, −4.36800531468517690847863369810, −3.97776970866971482582701838201, −3.95016738525998569579110113141, −3.63455688525051791274289816000, −2.52759809345947439612794892322, −1.51545986592200855846070605594, 1.51545986592200855846070605594, 2.52759809345947439612794892322, 3.63455688525051791274289816000, 3.95016738525998569579110113141, 3.97776970866971482582701838201, 4.36800531468517690847863369810, 5.18213621752467731457333050423, 5.39734069479177377929684220852, 5.57902814091702612338913124920, 6.18456918179466007260633386603, 6.78905538776817669651575731269, 6.87919402287606897317926620573, 7.36207989365010637180779909424, 7.46498094166597590559225299668, 7.52540775289160939623334917265, 8.308002667946383299678719688113, 8.850316335612125910152289476152, 9.036532808057901851766936685973, 9.078392531186914942929991916857, 9.520704082235653297044018337427, 10.09638830681397758136885600406, 10.42582258176282826104586338613, 10.83936797101497974980434560023, 10.87905492944601137255752967700, 11.38273753470751407937937588343

Graph of the $Z$-function along the critical line