Properties

Label 8-648e4-1.1-c3e4-0-2
Degree $8$
Conductor $176319369216$
Sign $1$
Analytic cond. $2.13680\times 10^{6}$
Root an. cond. $6.18330$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8·5-s + 30·7-s − 46·11-s − 92·13-s − 44·17-s − 172·19-s − 58·23-s + 65·25-s + 108·29-s − 136·31-s + 240·35-s − 360·37-s + 672·41-s + 70·43-s + 852·47-s + 710·49-s − 1.33e3·53-s − 368·55-s + 548·59-s − 284·61-s − 736·65-s − 1.16e3·67-s + 1.61e3·71-s − 3.02e3·73-s − 1.38e3·77-s + 22·79-s + 1.54e3·83-s + ⋯
L(s)  = 1  + 0.715·5-s + 1.61·7-s − 1.26·11-s − 1.96·13-s − 0.627·17-s − 2.07·19-s − 0.525·23-s + 0.519·25-s + 0.691·29-s − 0.787·31-s + 1.15·35-s − 1.59·37-s + 2.55·41-s + 0.248·43-s + 2.64·47-s + 2.06·49-s − 3.46·53-s − 0.902·55-s + 1.20·59-s − 0.596·61-s − 1.40·65-s − 2.11·67-s + 2.69·71-s − 4.84·73-s − 2.04·77-s + 0.0313·79-s + 2.03·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{12} \cdot 3^{16}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(4-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{12} \cdot 3^{16}\right)^{s/2} \, \Gamma_{\C}(s+3/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{12} \cdot 3^{16}\)
Sign: $1$
Analytic conductor: \(2.13680\times 10^{6}\)
Root analytic conductor: \(6.18330\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{12} \cdot 3^{16} ,\ ( \ : 3/2, 3/2, 3/2, 3/2 ),\ 1 )\)

Particular Values

\(L(2)\) \(\approx\) \(0.7319439576\)
\(L(\frac12)\) \(\approx\) \(0.7319439576\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5$D_4\times C_2$ \( 1 - 8 T - T^{2} + 296 p T^{3} - 776 p^{2} T^{4} + 296 p^{4} T^{5} - p^{6} T^{6} - 8 p^{9} T^{7} + p^{12} T^{8} \)
7$D_4\times C_2$ \( 1 - 30 T + 190 T^{2} - 720 T^{3} + 77751 T^{4} - 720 p^{3} T^{5} + 190 p^{6} T^{6} - 30 p^{9} T^{7} + p^{12} T^{8} \)
11$D_4\times C_2$ \( 1 + 46 T + 734 T^{2} - 58880 T^{3} - 2678033 T^{4} - 58880 p^{3} T^{5} + 734 p^{6} T^{6} + 46 p^{9} T^{7} + p^{12} T^{8} \)
13$D_4\times C_2$ \( 1 + 92 T + 2155 T^{2} + 176180 T^{3} + 16381264 T^{4} + 176180 p^{3} T^{5} + 2155 p^{6} T^{6} + 92 p^{9} T^{7} + p^{12} T^{8} \)
17$D_{4}$ \( ( 1 + 22 T - 2917 T^{2} + 22 p^{3} T^{3} + p^{6} T^{4} )^{2} \)
19$D_{4}$ \( ( 1 + 86 T + 10542 T^{2} + 86 p^{3} T^{3} + p^{6} T^{4} )^{2} \)
23$D_4\times C_2$ \( 1 + 58 T - 21610 T^{2} + 37120 T^{3} + 434734999 T^{4} + 37120 p^{3} T^{5} - 21610 p^{6} T^{6} + 58 p^{9} T^{7} + p^{12} T^{8} \)
29$D_4\times C_2$ \( 1 - 108 T - 39829 T^{2} - 293220 T^{3} + 1772232432 T^{4} - 293220 p^{3} T^{5} - 39829 p^{6} T^{6} - 108 p^{9} T^{7} + p^{12} T^{8} \)
31$D_4\times C_2$ \( 1 + 136 T + 5746 T^{2} - 6369152 T^{3} - 1275955517 T^{4} - 6369152 p^{3} T^{5} + 5746 p^{6} T^{6} + 136 p^{9} T^{7} + p^{12} T^{8} \)
37$D_{4}$ \( ( 1 + 180 T + 109205 T^{2} + 180 p^{3} T^{3} + p^{6} T^{4} )^{2} \)
41$D_4\times C_2$ \( 1 - 672 T + 201650 T^{2} - 75325824 T^{3} + 26593279251 T^{4} - 75325824 p^{3} T^{5} + 201650 p^{6} T^{6} - 672 p^{9} T^{7} + p^{12} T^{8} \)
43$D_4\times C_2$ \( 1 - 70 T - 49010 T^{2} + 7357280 T^{3} - 3804659249 T^{4} + 7357280 p^{3} T^{5} - 49010 p^{6} T^{6} - 70 p^{9} T^{7} + p^{12} T^{8} \)
47$D_4\times C_2$ \( 1 - 852 T + 337586 T^{2} - 153932544 T^{3} + 64646122803 T^{4} - 153932544 p^{3} T^{5} + 337586 p^{6} T^{6} - 852 p^{9} T^{7} + p^{12} T^{8} \)
53$D_{4}$ \( ( 1 + 668 T + 357854 T^{2} + 668 p^{3} T^{3} + p^{6} T^{4} )^{2} \)
59$D_4\times C_2$ \( 1 - 548 T - 178294 T^{2} - 37176320 T^{3} + 125199376747 T^{4} - 37176320 p^{3} T^{5} - 178294 p^{6} T^{6} - 548 p^{9} T^{7} + p^{12} T^{8} \)
61$D_4\times C_2$ \( 1 + 284 T - 335381 T^{2} - 10770700 T^{3} + 103259031472 T^{4} - 10770700 p^{3} T^{5} - 335381 p^{6} T^{6} + 284 p^{9} T^{7} + p^{12} T^{8} \)
67$D_4\times C_2$ \( 1 + 1162 T + 435478 T^{2} + 363984880 T^{3} + 340235016415 T^{4} + 363984880 p^{3} T^{5} + 435478 p^{6} T^{6} + 1162 p^{9} T^{7} + p^{12} T^{8} \)
71$D_{4}$ \( ( 1 - 806 T + 876422 T^{2} - 806 p^{3} T^{3} + p^{6} T^{4} )^{2} \)
73$D_{4}$ \( ( 1 + 1510 T + 1282935 T^{2} + 1510 p^{3} T^{3} + p^{6} T^{4} )^{2} \)
79$D_4\times C_2$ \( 1 - 22 T - 647834 T^{2} + 7430720 T^{3} + 176990142727 T^{4} + 7430720 p^{3} T^{5} - 647834 p^{6} T^{6} - 22 p^{9} T^{7} + p^{12} T^{8} \)
83$D_4\times C_2$ \( 1 - 1540 T + 925370 T^{2} - 466090240 T^{3} + 408590790331 T^{4} - 466090240 p^{3} T^{5} + 925370 p^{6} T^{6} - 1540 p^{9} T^{7} + p^{12} T^{8} \)
89$C_2$ \( ( 1 + 1323 T + p^{3} T^{2} )^{4} \)
97$D_4\times C_2$ \( 1 + 472 T - 1155758 T^{2} - 210891488 T^{3} + 864077099203 T^{4} - 210891488 p^{3} T^{5} - 1155758 p^{6} T^{6} + 472 p^{9} T^{7} + p^{12} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.12483619093999280587178824495, −7.06193219701301698844489908554, −6.93326642192170018513752425621, −6.28099810248704545370552662346, −6.12398725086827895330093676740, −6.07695136590831598294388850026, −5.78898331894762808852982941278, −5.26144388009026063146372903195, −5.20863082946634109988242425079, −5.06005321670948261700311082088, −4.91984654702828375813694858326, −4.29832219922113269650681390517, −4.20226825093013747963099009673, −4.12453549135956103055854541515, −4.02772229294722513329555133832, −3.14377649327145751791893908117, −2.69319971758263590041220288964, −2.67488933149675134465244325605, −2.56466385520311338448426864510, −2.17761668165897401495387059639, −1.77204642420291855540082200780, −1.46013414784476814503069234340, −1.31912450781967173161303098809, −0.43977508558155506867688482656, −0.15289030822536667593393979547, 0.15289030822536667593393979547, 0.43977508558155506867688482656, 1.31912450781967173161303098809, 1.46013414784476814503069234340, 1.77204642420291855540082200780, 2.17761668165897401495387059639, 2.56466385520311338448426864510, 2.67488933149675134465244325605, 2.69319971758263590041220288964, 3.14377649327145751791893908117, 4.02772229294722513329555133832, 4.12453549135956103055854541515, 4.20226825093013747963099009673, 4.29832219922113269650681390517, 4.91984654702828375813694858326, 5.06005321670948261700311082088, 5.20863082946634109988242425079, 5.26144388009026063146372903195, 5.78898331894762808852982941278, 6.07695136590831598294388850026, 6.12398725086827895330093676740, 6.28099810248704545370552662346, 6.93326642192170018513752425621, 7.06193219701301698844489908554, 7.12483619093999280587178824495

Graph of the $Z$-function along the critical line