Properties

Label 2-648-1.1-c3-0-11
Degree $2$
Conductor $648$
Sign $1$
Analytic cond. $38.2332$
Root an. cond. $6.18330$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 20.2·5-s − 24.7·7-s + 18.8·11-s − 48.4·13-s + 40.4·17-s + 7.82·19-s + 157.·23-s + 283.·25-s + 219.·29-s − 139.·31-s − 500.·35-s + 270.·37-s + 30.7·41-s + 57.2·43-s − 143.·47-s + 269.·49-s + 180.·53-s + 380.·55-s − 317.·59-s + 759.·61-s − 979.·65-s + 428.·67-s + 29.0·71-s − 327.·73-s − 465.·77-s − 1.02e3·79-s + 454.·83-s + ⋯
L(s)  = 1  + 1.80·5-s − 1.33·7-s + 0.515·11-s − 1.03·13-s + 0.577·17-s + 0.0945·19-s + 1.43·23-s + 2.27·25-s + 1.40·29-s − 0.807·31-s − 2.41·35-s + 1.20·37-s + 0.117·41-s + 0.203·43-s − 0.444·47-s + 0.784·49-s + 0.466·53-s + 0.932·55-s − 0.699·59-s + 1.59·61-s − 1.86·65-s + 0.780·67-s + 0.0486·71-s − 0.525·73-s − 0.688·77-s − 1.45·79-s + 0.601·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 648 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 648 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(648\)    =    \(2^{3} \cdot 3^{4}\)
Sign: $1$
Analytic conductor: \(38.2332\)
Root analytic conductor: \(6.18330\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 648,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(2.542476870\)
\(L(\frac12)\) \(\approx\) \(2.542476870\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5 \( 1 - 20.2T + 125T^{2} \)
7 \( 1 + 24.7T + 343T^{2} \)
11 \( 1 - 18.8T + 1.33e3T^{2} \)
13 \( 1 + 48.4T + 2.19e3T^{2} \)
17 \( 1 - 40.4T + 4.91e3T^{2} \)
19 \( 1 - 7.82T + 6.85e3T^{2} \)
23 \( 1 - 157.T + 1.21e4T^{2} \)
29 \( 1 - 219.T + 2.43e4T^{2} \)
31 \( 1 + 139.T + 2.97e4T^{2} \)
37 \( 1 - 270.T + 5.06e4T^{2} \)
41 \( 1 - 30.7T + 6.89e4T^{2} \)
43 \( 1 - 57.2T + 7.95e4T^{2} \)
47 \( 1 + 143.T + 1.03e5T^{2} \)
53 \( 1 - 180.T + 1.48e5T^{2} \)
59 \( 1 + 317.T + 2.05e5T^{2} \)
61 \( 1 - 759.T + 2.26e5T^{2} \)
67 \( 1 - 428.T + 3.00e5T^{2} \)
71 \( 1 - 29.0T + 3.57e5T^{2} \)
73 \( 1 + 327.T + 3.89e5T^{2} \)
79 \( 1 + 1.02e3T + 4.93e5T^{2} \)
83 \( 1 - 454.T + 5.71e5T^{2} \)
89 \( 1 - 677.T + 7.04e5T^{2} \)
97 \( 1 + 397.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.834433184048256046321795114980, −9.594156723697967982449615148613, −8.766512380412236135838003643053, −7.19528865790507042127703820160, −6.50428061032345454197879644447, −5.75789488173605486065169435552, −4.82628251683087474493083912980, −3.19901530076047260603952004370, −2.37444954348123779720200403292, −0.961708932992569776379382974742, 0.961708932992569776379382974742, 2.37444954348123779720200403292, 3.19901530076047260603952004370, 4.82628251683087474493083912980, 5.75789488173605486065169435552, 6.50428061032345454197879644447, 7.19528865790507042127703820160, 8.766512380412236135838003643053, 9.594156723697967982449615148613, 9.834433184048256046321795114980

Graph of the $Z$-function along the critical line